
One Cord Hero

◎ Work tips

• the point is to do personal work, even if you work together and discuss
• all useful notions will be given in class or in the document
• read the questions, most the answers are in them
• ask questions �

Context

The point of this project is to build a simplified Guitar Hero game step by step. We
will simplify the game so that it only uses one guitar cord.

At any point, you can ask questions either in class or by email. You can also send
your file without questions, and it will be reviewed.

� Idea
The main idea in the Guitar Hero game is that notes have to be played when a
symbol reaches a the line.
We are using a single cord guitar, and any key strike will allow to “play” the note.

Quick definitions

A position in the game zone is defined by 2 numbers that indicate the distance to the
top-left corner (0, 0).

A circle is defined by the position of its centre and its radius.

At each game loop, the centre of the circle will move by 1 pixel along the width of
the window. Its height will not change.

All the different elements (background, cord, notes, game line) will have their own
style (colour etc).

The speed of all the notes will be the same.

1

Template discovery

You are provided with a code template that you have to fill in to be able to play.

The file is named one_cord_hero_template.py. Download this file1 and re-
place “template” by your last name.

Step 1. Variable declaration

As with all the projects you will do, declaring the initial variables is a good way to get
started.

The variables we are goin to declare allow us to define the playing area and make
sure the dimensions are proportional. We will base this on the radius of the circle.

In the file, define the variables to manipulate the following values:

• the base radius of a circle, with value 10

• the width of the game area, equal to 40 radii

• the height of the game area, equal to 4 radii

• the position of the line, which should be the width of the window minus 2 radii

• the position of the cord, which should be in the middle of the game area

• the colour for the notes

• the colour for the cord

• the colour for the game line

• the background colour

Step 2. Window preparation

We now have to create the context in which the window will appear.

Define a variable that will contain the window object by using the width and
height variables you have previously defined.

� Idea
The gaming area must change is you update the base radius value!

Fill in the window’s background.

Useful functions are defined below!
1from here: https://irwin.sh/documents/teaching/rubika/scripts/one_cord_

hero_template.py

2

https://irwin.sh/documents/teaching/rubika/scripts/one_cord_hero_template.py
https://irwin.sh/documents/teaching/rubika/scripts/one_cord_hero_template.py

Ð Code

Stores in a variable a window with width and height
window = pygame.display.set_mode((width, height))
Fill a window with a given colour
window.fill(colour)

Step 3. First graphical element

In this step, we will write the instructions to draw the guitar cord and the game line.

For each of these, you should use the variables you have previously defined. This
will allow the lines to stay correctly positioned event if the game area size is updated.

Useful code snippet incoming!

Ð Code

draws a line
pygame.draw.line(window, # in the window

colour, # in that colour
(x_st, y_st), # from this point
(x_end, y_end), # to this point
width) # with that width

Step 4. Variables for the game

These new variables will allow to store the data useful for the game.

You will need:

• the number of notes (start by using 10)

• a list to contain the positions of the notes

• a score (start at 0 of course)

• a clock measure (start at 10 for the moment)

Step 5. Game main loop

This step will create the game’s main loop, also known as the code the game will have
to execute until it’s finished.

3

� Idea
The game is finished when there is no more notes to show, also meaning the po-
sition list is empty

What you need to do:

1. change the main loop’s stop condition

2. correctly call the game_turn function by correctly using the parameters and
returning the correct values

3. the clock should use the measure you created

4. update the end-of-game message to display the player’s score

� Idea
The idea for the loop is: “while there are notes to display; update the score and
the notes’ position with the game turn function update the clock”

Step 6. Defining the distance

We have to define the distance between two notes, as to show them nicely on the
screen.

The distance we will start with will be chosen randomly between :

• 2 radii

• half of the window’s width

� Idea
For this, you have to import the randint function from the random package.

Define the get_random function to do this.

Step 7. Showing the notes

We have defined a way to compute the distance between two notes. We now have to
show them on the screen.

For this, define the following functions:

• draw_note

• draw_note_list

The second function is used to draw all the notes. For that, you probably want to
loop the note list and call another function.

4

Step 8. Defining the notes

We have to find a way to compute the initial positions for the notes. Our first version
will use random positions.

Write the body of the get_random_positions function so that it takes one pa-
rameter. This parameter is a number. The function will return a list of that size with
the notes’ positions. The notes will be separated by a random distance.

The function should:

1. create an empty list

2. define the first note’s position to 0

3. for the asked number of times:

(a) choose a random number

(b) substract that number from the last position

(c) add this new position to the list

4. return the list

Step 9. Moving the notes

At last has come the time to move the notes forward2.

To do this, write the body of the scroll function. This functino takes the position
list as a parameter and returns an updated version.

To update the positions, add 1 to every position in the list.

If the first position is out of the window, we remove it from the list. We can then
return the updated list.

Step 10. Seeing the notes move

• Add a call to the function that draws the notes (see Step 7).

• Add a call to the function that updates the position list (see Step 9).

• Before the game starts, update the position list you created by calling the func-
tion you created at Step 8.

Step 11. Playing a note

We consider that a note is played (and that we earn 1 point) if the centre of the note
est at less than a radius from the game line.

2if we don’t, the game becomes very boring...

5

Write the body of the play_note function. This functions takes as parameters
the list of the notes’ positions and the current score and returns them both updated.

You only test the first position in the list. If the note’s position is deemed correct,
then the note is removed and the score is increased.

Step 12. Reacting to an event

We want to be able to react to user events. Add the code that allows:

1. to handle exiting the game window (clicking the × implies the game is over)

2. to handle a keypress (then we play a note)

� Idea
The event sent by clicking the × is pygame.QUIT. The event sent by a press on the
keyboard is pygame.KEYDOWN.

Step 13. Extensions

1. Add a test in the function you wrote in Step 9. If the last position of the list is
greater than 0, then we add new positions.

2. Update the game_turn function to accelerate the clock every 10 points

3. Count the number of missed notes. You can use this to give a limited number
of possible missed notes to the player.

4. Try adding a cord ?

5. Update the game art ?

6. Add music ?

6

	Variable declaration
	Window preparation
	First graphical element
	Variables for the game
	Game main loop
	Defining the distance
	Showing the notes
	Defining the notes
	Moving the notes
	Seeing the notes move
	Playing a note
	Reacting to an event
	Extensions

