
Space Invaders

◎ Work tips

• the point is to do personal work, even if you work together and discuss
• all useful notions will be given in class or in the document
• read the questions, most the answers are in them
• ask questions �

Context

The Space Invaders game is considered to be one of the most influential games of all
time. It started the golden age of arcade-style video games.

The point of the game is to control a small spaceship that has to fight waves of
aliens. The aliens approach at small speed, and the player can shoot bullets to de-
stroy them. If the aliens get to the bottom of the screen, the the game is lost.

The game can mostly be played as an arcade game, meaning unlimited play as
long as the aliens do not get to the bottom of the screen.

� Idea
Do not forget that the code template gives you a lot of information on where to
write the elements for the different steps. Use that to your advantage.

Our first version will look something like this:

Figure 1: First version of our Space Invaders game

1



Step 1. Base variables and setting up the window

As usual, we will start by creating a few variables to hold the base values for our game
construction. You will need:

• A unit, which we will set to 1
• A window_width and a window_height. They will be set to 1920 units and 1080

units respectively1.

• A background_colour, set it to black for the moment.

• A player_base_speed equal to 10 units.

• A player_base_scale equal to 75.

• An enemy_base_speed equal to 1 units.

• An enemy_base_scale equal to 75.

• A bullet_base_speed equal to 30 units.

We now have to set up the window our game will play in. To do this, you have to
update the background colour in the main loop, and correctly set the size information
at the screen creation.

Step 2. The player

In Space Invader-type games, the player is represented by a spaceship. The player is
able to move left and right as well as shoot a cannon.

In this step, we create the necessary information to hold the player, and we draw
it on the screen.

1. Create a dictionnary called player. It will hold the following information:

• score, set at 0
• x, set at half the window width
• y, set at window height minus 100 units
• speed, set at player_base_speed
• change, set at 0
• size, set as a tuple(player_base_scale×unit, player_base_scale×unit)

2. Create a dictionnary called game. It will hold all the necessary information for
the game. Add a key "player" that holds the player dict.

1Check you screen. If the window does not show up, try a smaller resolution such as 1366x768 or
1600x900

2



� Idea

Instead of drawing the player’s spaceship with pygame methods (circles and
rectangles), we are going to load a sprite.

Take a couple of instants to understand how the draw_player function works. How
it loads the image, and what it does to it.

3. Call the draw_player function with the correct parameter to draw the player on
the screen.

ò Information
You should be able to run the script and see the window with your spaceship in it.

Step 3. Moving the player

Having a spaceship is nice, but it’s better if we can move it. The movement in this
game is 1-D, meaning we will only be moving on the x-axis.

We will move the spaceship by using the left and right arrows on the keyboard.
We want to be able to move as long as the key is pressed, and stop when the key is
not pressed anymore.

� Idea
If pygame.KEYDOWN is the event that is triggered when a key is pressed, what do
you think is the event triggered when the key is released?

• Handle the press on a key. If an arrow key is pressed, update the "change"
field in the player dictionnary by the correct value (± the speed).

• Handle the release of an arrow key. The "change" field should be reset to 0.

• Uncomment the line that makes the player move by the value of the "change"
field.

• Handle the edge cases: the player should not be able to be outside the window.
If the player’s x-coordinate is less than 0, set it to 0. Find the second condition
by trying2.

ò Information
The player should be able to move from side to side of the window now. Keeping
the key pressed should continue the movement, while releasing it stops the player.

The player sprite should not be able to go outside of the game area.

2don’t forget that coordinates are computed from the top-left corner. This also applies to sprites.

3



Step 4. Creating the enemies

In order to make the game interesting, we need to have enemies. We will start by
setting up everything we need to draw the enemies, then we will add their movement.

Enemies will be represented by dictionnaries that contain all the necessary infor-
mation, just like the player. The fields you will have in the dictionnary are: x, y, size
and speed.

1. Write a function called draw_enemy that takes a dict as parameter and draws
it at the correct position on the screen. Use the draw_player function as an
example. Find the correct sprite �

2. Write a draw_enemy_list function that takes a list of enemies and draws them
all.

This allows us to draw the aliens, we now have to build them. To do this, we will
generate a random number of enemies at random positions on a given line.

3. Write a function called get_random_position that returns a tuple of two values.
The first value should be a random x-coordinate, the second value should be
equal to the base scale of the enemies.

4. Write a get_number_of_enemies function that returns a random number be-
tween 0 and 5.

5. Write a create_enemies function that takes a number nb as a parameter and
returns a list of nb enemies. When creating an enemy, the position should be
generated by a function, the size is computed in a similar way as for the player
and the speed is the enemy base speed.

6. Create a list of enemies and add it to our game dictionnary.

7. Draw the enemies inside the game_turn function.

ò Information
You should be able to see a row of little aliens at the top of your screen at the
moment.

Step 5. Moving and waves

We will now make the enemies move towards the bottom of the screen. We will also
add multiple waves to keep the enemies coming.

To make the enemies move, you have to loop over the list at each game turn and
update their y-coordinate by their speed.

We will add new enemies once the current line is far enough. To do this:

• Create a "next_wave" field in the game dictionnary. Set its value to 2 ticks.

• At each game loop, decrease this value by 1.

4



• If the value is 0, set it back to 2 ticks and append to the enemy list new
random enemies. Use get_number_of_enemies and create_enemies.

Step 6. Building a bullet

The spaceship has to be able to fire bullets to destroy the incoming aliens. We will
start by setting up everything we need. The bullet will be represented by a diction-
nary, which will contain the following fields: x, y, speed and fired.

1. Create a bullet. The speed is 30 units, x and y can be anything and the fired
status is False. Add it to the game dictionnary.

2. Write a draw_bullet function that takes a bullet as parameter and draws it. Use
the other drawing functions as examples.

3. Draw the bullet if it is fired at each game turn.

ò Information
You should be able to see a fired bullet if you set the correct fields correctly.

Step 7. Firing a bullet

We limit the rate of fire to one bullet at a time. This means you cannot fire until the
bullet has exited the window or hit an enemy.

1. Write a fire_bullet function. The function takes a bullet and the player as pa-
rameters. If the bullet is not currently fired, then set the state to True, as well
as the coordinates to be the player’s coordinates.

2. Look at the hits function. Update the return line to return True if the distance
is smaller than the enemy’s size.

3. Write a out_of_bounds function that takes a bullet as parameter and returns
True if the bullet is outside the game area (hint: think of the direction of travel,
do you have to check all the possibilities?)

Now, inside the game_turn function:

4. Handle the pressing of the Space key. When pressed, fire the bullet.

5. If the bullet is fired, move it by updating the y coordinate with its speed. The
bullet should go up.

6. If fired, check whether it is out of bounds. If so, reset the state of the "fired"
field to False.

7. If the bullet is fired, check whether it hits an enemy. If so, reset the bullet, add
1 to the player score, and remove the enemy from the list.

5



Step 8. Game over

The game is considered to be lost if an enemy reaches an imaginary line that we set
in the window.

We will consider this line to be positioned at 3 player sizes over the bottom
of the window.

Add the relevant code to handle this.

More & Image sources

Once you finished the game, please feel free to make it better by changing the game-
play, the images, the sound, etc.

ò Information
Do not forget to use images you are allowed to use and credit the authors. The
current images are sourced from:

• https://www.flaticon.com/free-icon/ufo_214358
• https://www.flaticon.com/free-icon/space-invaders_744737
• https://www.freepng.fr/png-drz5lj
• https://www.flaticon.com/free-icon/bullet_224681

You are also welcome to create your own images / animations!

6

https://www.flaticon.com/free-icon/ufo_214358
https://www.flaticon.com/free-icon/space-invaders_744737
https://www.freepng.fr/png-drz5lj
https://www.flaticon.com/free-icon/bullet_224681

	Base variables and setting up the window
	The player
	Moving the player
	Creating the enemies
	Moving and waves
	Building a bullet
	Firing a bullet
	Game over

