Functions

© Objectives

At the end of this lesson, you should be able to:
- define the concept of function
« recognise functions in code
« implement functions to extend your code

1. Introduction

In the code you have been writing so far, you probably noticed that writing the same
pieces of code at different places is tedious and sub-optimal. We have seen that
loops are one way to avoid repeating code, but we need to find another way to do so,
so the same instructions can be reused in different contexts.

Functions are used to do just that. They allow to set aside groups of instructions
to be used at different parts of the program.

‘ The main idea is: define once, use everywhere \

2. Function definition

To define a function, Python gives us the def keyword’. In Python, and most pro-
gramming languages, a function is a special object composed of:

* aname
 a sequence of instructions
Optionnally, functions can also have:

- one (or more) parameters

« a return value

def say_hello():
print("Hello!")

>— Output

>>> say_hello()
Hello!

Tawfully adequate, don't you think?



With parameters, the function definition looks like this:

def say_hello(name):
print(f"Hello, {name}")

>— Output

>>> say_hello("Bob")
Hello, Bob

3. Transforming values

Functions can also be used to create new values or transform existing ones. To do
this, we can use the return keyword.

© Information
Careful! The return keyword stops the execution of the function

A couple of examples are presented below.

def create_player(name, player_class):
return {"name": name, "class": player_class,

xp": o}

>~ Output

>>> create_player("Ned Stark", "Warden")
"name": "Ned Stark", "class": "Warden",

xp": o}

def add_two(number):
number = number + >
return number

>— Output

>>> add_two(14)
16




Most of the time, when you create or use a function that returns a value, you want
to store it in a variable so it can be used.




	Introduction
	Function definition
	Transforming values

