
Booleans and Loops
◎ Objectives

At the end of this lesson, you should be able to:
• explain the concept of boolean / binary
• use loops to build more complex scripts
• build a simple game

1. Checks - Motivation

For the moment, we have seen how to write very simple scripts. These scripts consist
of a single flow of actions. However when we looked at flowcharts, we saw that a
major part of representing problems is to check the state of the current environment
before executing an action.

« Example: Checking states

• is the water boiling?
• is the pasta cooked?
• does the number of hours exceed 12?

The point of these checks in programming is to be able to adapt the behaviour of
a program according to the state of the “environment”. Without surprise, it is possible
in Python1.

2. Booleans

Checking something is the same as verifying a statement. This implies we need to
have a way of representing true and false statements.

� Idea
The easiest way to think about this is to think about binary2 statements such as:

• Yes vs. No
• True vs. False

In most programming languages, choice statements are represented by a boolean
type. This type can usually only take two different values:

• True
• False
A simple example of the use of boolean variables is shown here:

1as well as in any programming language, obviously
2there is a strong correlation with the word, you can check wikipedia for more information on this

subject

1

Ð Code

adult = True
student = False

Where we instantiate two boolean variables to different values.

3. Conditions

Conditions are boolean statements that allow branching to happen in the code’s flow.

� Idea
They are the translation of plain language questions such as:

• Are you an adult?
• Is this value correct?
• Is the water boiling? Is the pasta cooked?3

The main concept is to think of “What should happen if this is true? What if it’s
false?”. We then want different code snippets to be executed according to the result
of the check.

Conditions use boolean variables and comparisons to establish a fact. The avail-
able comparisons are:

• Strictly greater: a > b
• Greater or equal: a >= b
• Stricly smaller: a < b
• Smaller or equal: a <= b
• Equal: a == b
• Different: a != b
These comparisons operators allow us to write conditional code. In Python, the

syntax is based on 3 keywords: if, elif, else.

Ð Code

if condition:
code to execute

elif second_condition:
code to execute

else:
code to execute

3see https://irwin.sh/documents/teaching/rubika/algorithms.pdf for reference �

2

https://irwin.sh/documents/teaching/rubika/algorithms.pdf

ò Information
Note the indentation level for the lines between the keywords. Indentation is the
way Python distinguishes between different code blocks.
The indentation you use should be the same all around your files. It is highly
recommended to use 4 spaces4.

Ð Code

alive = True
nb_lives = 1

if alive:
print("I'm alive")
if nb_lives > 1:

print(f"I have {nb_lives} lives left")
elif nb_lives == 1:

print("On my last life!")
else:

print("I'm dead")

v Exercise
Write down what the program outputs.
What happens if you change nb_lives to 3?

4. Loops

As we have seen before, writing code is good, but writing the same code multiple
times is bad. However, sometimes we have to repeat actions on different elements
(elements of a list, for a certain number of times, etc. . .).

In programming languages, we do this with loops. Two main types of loops exist:
for loops and while loops.

For loops

Sometimes you want to execute a portion of code a given number of times, or on
every element in a list. You can use for loops to do this.

4it is easier to configure VSCode to replace a tab character by 4 spaces so you just have to use the
tab key

3

� Idea
for loops allow us to translate steps such as these:

« Example:

I have to go to school for all my classes!

They are best used when you know the exact number of times the code portion
should be executed.

In Python, the syntax is quite simple:

Ð Code

for i in range(10):
print(i, sep=" ")

_ Output

0 1 2 3 4 5 6 7 8 9

While loops

Sometimes, you must execute a portion of code without knowing the exact number
of repetitions. This is usually the case when dealing with user input, waiting for an
action to be finished, etc. . .

� Idea

while loops allow to translate steps such as these:

« Example:

While it’s sunny, I’ll play outside

The syntax is similar than the one for for loops.

Ð Code

while alive:
if is_hit:

alive = False
else:

print("yay")

4

v Exercise - the���final first countdown
Write code that prints a countdown for a firework show:

_ Output

3
2
1
wouhou !

v Exercise
Write code that asks the user for a word in input and prints the number of charac-
ters in the word.

v Exercise
Write code that prints the number of spaces in a sentence. You can ask the user
for the sentence.

5

	Checks - Motivation
	Booleans
	Conditions
	Loops

