
Direct Access for Conjunctive Queries with1

Negations2

Florent Capelli #3

Univ. Artois, CNRS, UMR 8188, Centre de Recherche en Informatique de Lens (CRIL), F-623004

Lens, France5

Oliver Irwin #6

Université de Lille, CNRS, Inria, UMR 9189 - CRIStAL, F-59000 Lille, France7

Abstract8

Given a conjunctive query Q and a database D, a direct access to the answers of Q over D is the9

operation of returning, given an index j, the jth answer for some order on its answers. While this10

problem is #P-hard in general with respect to combined complexity, many conjunctive queries have an11

underlying structure that allows for a direct access to their answers for some lexicographical ordering12

that takes polylogarithmic time in the size of the database after a polynomial time precomputation.13

Previous work has precisely characterised the tractable classes and given fine-grained lower bounds14

on the precomputation time needed depending on the structure of the query. In this paper, we15

generalise these tractability results to the case of signed conjunctive queries, that is, conjunctive16

queries that may contain negative atoms. Our technique is based on a class of circuits that can17

represent relational data. We first show that this class supports tractable direct access after a18

polynomial time preprocessing. We then give bounds on the size of the circuit needed to represent19

the answer set of signed conjunctive queries depending on their structure. Both results combined20

together allow us to prove the tractability of direct access for a large class of conjunctive queries.21

On the one hand, we recover the known tractable classes from the literature in the case of positive22

conjunctive queries. On the other hand, we generalise and unify known tractability results about23

negative conjunctive queries – that is, queries having only negated atoms. In particular, we show24

that the class of β-acyclic negative conjunctive queries and the class of bounded nest set width25

negative conjunctive queries admit tractable direct access.26

2012 ACM Subject Classification Information systems → Relational database model27

Keywords and phrases Conjunctive queries, factorised databases, direct access, hypertree decompos-28

ition29

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2330

Funding This work was supported by project ANR KCODA, ANR-20-CE48-0004.31

Acknowledgements I want to thank . . .32

1 Introduction33

The direct access task, given a database query Q and a database D, is the problem of34

outputing on input k, the k-th answer of Q over D or an error when k is greater than the35

number of answers of Q, where some order on JQKD, the answers of Q over D, is assumed.36

This task has been introduced by Bagan, Durand, Grandjean and Olive in [2] and is very37

natural in the context of databases. It can be used as a building block for many other38

interesting tasks such as counting, enumerating [2] or sampling without repetition [13, 22] the39

answers of Q. Of course, if one has access to an ordered array containing JQKD, answering40

direct access tasks simply consists in reading the right entry of the array. However, building41

such an array is often expensive, especially when the number of answers of Q is large. Hence,42

a natural approach for solving this problem is to simulate this method by using a data43

structure to represent JQKD that still allows for efficient direct access tasks to be solved but44

© Florent Capelli and Oliver Irwin;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:florent.capelli@univ-artois.fr
https://orcid.org/0000-0002-2842-8223
mailto:oliver.irwin@univ-lille.fr
https://orcid.org/0000-0002-8986-1506
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Direct Access for Conjunctive Queries with Negations

that is cheaper to compute than the complete answer set. This approach is thus separated in45

two phases: a preprocessing phase where the datastructure is constructed followed by a phase46

where direct access tasks are solved. To measure the quality of an algorithm for solving47

direct access tasks, we hence separate the preprocessing time – that is the time needed for48

the preprocessing phase – and the access time, that is, the time needed to answer one direct49

access query after the preprocessing. For example, the approach consisting in building an50

indexed array for JQKD has a preprocessing time in at least the size of JQKD (and much51

higher in practice) and constant access time. While the access time is optimal in this case,52

the cost of preprocessing is often too high to pay in practice.53

Previous work has consequently focused on devising methods with better preprocessing54

time while offering reasonable access time. In their seminal work [2], Bagan, Durand, Grand-55

jean and Olive give an algorithm for solving direct access tasks with linear precomputation56

time and constant access time on a class of first order logic formulas and bounded degree57

databases. Bagan [1] later studied the problem for monadic second order formulas over58

bounded treewidth databases. Another line of research has been to study classes of conjunct-59

ive queries that support efficient direct access. In [13], Carmeli, Zeevi, Berkholz, Kimelfeld,60

and Schweikardt prove that direct access tasks can be solved on acyclic conjunctive queries61

with linear preprocessing time and polylogarithmic access time for a well-chosen lexicograph-62

ical order. The results are also generalised to the case of bounded fractional hypertree63

width queries, a number measuring how far a conjunctive query is from being acyclic. It64

generalises many results from the seminal paper by Yannakakis establishing the tractability65

of model checking on acyclic conjunctive queries [35] to the tractability of counting the66

number of answers of conjunctive queries [31] having bounded hypertree width. This result67

was later improved by precisely characterising the lexicographical ordering allowing for this68

kind of complexity guarantees. Fine-grained characterisation of the complexity of answering69

direct access tasks on conjunctive queries, whose answers are assumed to be ordered using70

some lexographical order, has been given by Carmeli, Tziavelis, Gatterbauer, Kimelfeld and71

Riedewald in [12] for the special case of acyclic queries and by Bringmann, Carmeli and72

Mengel in [8] for the general case. More recently, Eldar, Carmeli and Kimelfeld [15] studied73

the complexity of solving direct access tasks for conjunctive queries with aggregation.74

In this paper, we devise new methods for solving direct access tasks on the answer75

set of signed conjunctive queries, that is, conjunctive queries that may contain negated76

atoms. This is particularly challenging because only a few tractability results are known on77

signed conjunctive queries. The model checking problem for signed conjunctive queries being78

NP-hard on acyclic conjunctive queries with respect to combined complexity, it is not possible79

to directly build on the work cited in the last paragraph. Two classes of negative conjunctive80

queries (that is, conjunctive queries where every atom is negated) have been shown so far81

to support efficient model checking: the class of β-acyclic queries [30, 5] and the class of82

bounded nested-set width queries [25]. The former has been shown to also support efficient83

(weighted) counting [7, 11]. Our main contribution is a generalisation of these results to direct84

access tasks. More precisely, we give an algorithm that efficiently solves direct access tasks85

on a large class of signed conjunctive queries, which contains in particular β-acyclic negative86

conjunctive queries, bounded nest-width negative conjunctive queries and bounded fractional87

hypertree width positive conjunctive query. For the latter case, the complexity we obtain is88

similar to the one presented in [8] and we also get complexity guarantees depending on a89

lexicographical ordering that can be specified by the user. Hence our result both improves90

the understanding of the tractability of signed conjunctive queries and unify the existing91

results with the positive case. In a nutshell, we prove that the complexity of solving direct92

F. Capelli and O. Irwin 23:3

access tasks for a lexicographical order of a signed conjunctive query Q roughly matches93

the complexity proven in [8] for the worst positive query we could construct by removing94

some negative atoms of Q and turning the others to positive atoms. It is not surprising95

since one could simulate such a query by choosing a database where some negated atoms are96

associated with empty relations and therefore making them virtually useless in the query.97

However, this result is not trivial to obtain and necessitates the introduction of new tools to98

handle negated atoms.99

As a byproduct, we introduce a new notion of hypergraph width based on elimination100

order, the β-hyperorder width, that is hereditary – in the sense that the width of every101

subhypergraph does not exceed the width of the original hypergraph – which makes it102

particularly well tailored for the study of the tractability of negative conjunctive queries. We103

show that this notion sits between nest-set width and β-hypertree width [18], but does not104

suffer from the main drawback of working with β-hypertree width: our width notion is based105

on a decomposition that works for every subhypergraph.106

Our method is based on a two-step preprocessing. Given a signed conjunctive query107

Q, a database D and an order ≺ on its variables, we start by constructing a circuit which108

represents JQKD in a factorised way, enjoying interesting syntactical properties. The size of109

this circuit depends on the complexity of the order ≺ chosen on the variables of Q. We then110

show that with a second light preprocessing on the circuit itself, we can answer direct access111

tasks on the circuit in time poly(n)polylog(D) where n is the number of variables of Q and112

D is the domain of D. This approach is akin to the approach used in factorised databases,113

introduced by Olteanu and Závodný [27], a fruitful approach allowing efficient management114

of the answer sets of a query by working directly on a factorised representation of the answer115

set instead of working on the query itself [26, 33, 3, 28]. However, the restrictions that we116

are considering in this paper are different from the ones used in previous work since we need117

to somehow account for the variable ordering in the circuit itself. The syntactic restrictions118

we use have already been considered in [11] where they are useful to deal with β-acyclic CNF119

formulas.120

Organisation of the paper. The paper is organised as follows: Section 2 introduces the121

notations and concepts necessary to understand the paper. We then present the family of122

circuits we use to represent database relations and the direct access algorithm in Section 3.123

Section 4 presents the algorithm used to construct a circuit representing JQKD from a join124

query Q (that is a conjunctive query without existential quantifiers) and a database D.125

Upper bounds on the size of the circuits produced are given in Section 4.3 using hypergraph126

decompositions defined in Section 4.2. Finally Section 5 explicitly states the results we127

obtain by combining both techniques together, explain how one can go from join query128

to conjunctive query by existentially projecting variables directly in the circuit and makes129

connections with the existing literature.130

2 Preliminaries131

General mathematical notations. Given n ∈ N, we denote by [n] the set {0, . . . , n}. When132

writing down complexity, we use the notation poly(n) to denote that the complexity is133

polynomial in n, polyk(n) to denote that the complexity is polynomial in n when k is134

considered a constant (in other words, the coefficients and the degree of the polynomial may135

depend on k) and polylog(n) to denote that the complexity is polynomial in log(n). Moreover,136

we use the shortcut Õ(N) to indicate that polylogarithmic factors are ignored, that is, the137

CVIT 2016

23:4 Direct Access for Conjunctive Queries with Negations

complexity is O(Npolylog(N)).138

Tuples and relations. Let D and X be finite sets. A (named) tuple on domain D and139

variables X is a mapping from X to D. We denote by DX the set of all tuples on domain D140

and variables X. A relation R on domain D and variables X is a subset of tuples, that is,141

R ⊆ DX . Given an tuple τ ∈ DX and Y ⊆ X, we denote by τ |Y the tuple on domain D and142

variable Y such that τ |Y (y) = τ(y) for every y ∈ Y . Given a variable x ∈ X and d ∈ D, we143

denote by [x← d] the tuple on variables {x} that assigns the value d ∈ D to x. We denote144

by ⟨⟩ the empty tuple, that is, the only element of D∅. Given two tuples τ1 ∈ DX1 and145

τ2 ∈ DX2 , we say that τ1 and τ2 are compatible, denoted by τ1 ≃ τ2, if τ1|X1∩X2 = τ2|X1∩X2 .146

In this case, we write τ1 ▷◁ τ2 the tuple on domain D and variables X1 ∪X2 defined as147

(τ1 ▷◁ τ2)(x) =
{

τ1(x) if x ∈ X1

τ2(x) if x ∈ X2
148

If X1∩X2 = ∅, we write τ1×τ2. The join R1 ▷◁ R2 of R1 and R2, for two relations R1, R2 on149

domain D and variables X1, X2 respectively, is defined as {τ1 ▷◁ τ2 | τ1 ∈ R1, τ2 ∈ R2, τ1 ≃150

τ2}. Observe that if X1 ∩X2 = ∅, R1 ▷◁ R2 is simply the cartesian product of R1 and R2. In151

this case, we denote it by R1×R2. The extended union of R1 and R2, denoted by R1 ∪ R2, is152

the relation on domain D and variables X1 ∪X2 defined as (R1 ×DX2\X1)∪ (R2 ×DX1\X2).153

When X1 = X2, the extended union of R1 and R2 is simply R1∪R2, that is, the set of tuples154

over X1 that are either in R1 or in R2.155

Let R ⊆ DX be a relation from a set of variables X to a domain D. We denote σF (R) as156

the subset of R where the formula F is true. Throughout the paper, we will assume that157

both the domain D and the variable set X are ordered. The order on D will be denoted as158

< and the order on X as ≺ and we will often write D = {d1, . . . , dp} with d1 < · · · < dp and159

X = {x1, . . . , xn} with x1 ≺ · · · ≺ xn. Given d ∈ D, we denote by rank(d) the number of160

elements of D that are smaller or equal to d. Both < and ≺ induce a lexicographical order161

≺lex on DX defined as τ ≺lex τ ′ if there exists x ∈ X such that for every y ≺ x, τ(y) = τ ′(y)162

and τ(x) < τ ′(x). Given a integer k ⩽ #R, we denote by R[k] the kth tuple in R for the163

≺lex-order.164

We will often use the following observation:165

▶ Lemma 1. Let τ = R[k] and x = min(var(R)). Then τ(x) = min{d | #σx⩽d(R) ⩾ k}.166

Moreover, τ = R′[k′], where R′ = σx=d(R) is the subset of R where x is equal to d and167

k′ = k −#σx<d(R).168

Proof. Let A = {d | #σx⩽d(R) ⩾ k}.169

We start by showing that τ(x) ∈ A, meaning #σx⩽τ(x) ⩾ k. Let α ⪯lex τ . Since x is the170

smallest variable, it follows that α ∈ σx⩽τ(x)(R) as α(x) ⩽ τ(x). Since there exists exactly k171

such assignments α (by definition of τ which is the kth tuple of R), we have #σx⩽τ(x)(R) ⩾ k.172

We now show that, given a value d′ < τ(x), d′ /∈ A and as such that τ(x) is indeed173

the smallest value in A. Let α ∈ σx⩽d′ . It follows that α(x) ⩽ τ(x), and therefore that174

α < τ . We therefore have that σx⩽d′(R) ⊂ {α | α ≺lex τ}. By definition of τ as the kth
175

tuple, the latter set has less than k − 1 elements. Hence d′ /∈ A. This implies that for any176

d ∈ A, τ(x) ⩽ d.177

This shows that τ(x) is indeed the smallest value d such that there exists at least k tuples178

α where α(x) ⩽ d.179

The second part of the lemma follows from the following observation: when assigning a180

value d to the variable x, one actually eliminates a certain number of tuples from the initial181

set. Specifically, the tuples that assign a different value to x.182

F. Capelli and O. Irwin 23:5

By definition, k is the cardinal of the set {τ ′ | τ ′ ⪯lex τ}. This set can be written as the183

disjoint union of the set of tuples where τ ′(x) < d (which are all smaller than τ) and the set184

of tuples smaller than τ where τ ′(x) = d. We therefore have k = #{τ | τ(x) < d}+ #{τ ′ |185

τ ′ ≺lex τ, τ ′(x) = d}. By definition, the first set is σx<d(R). The second part of the sum is186

exactly the index of the tuple in the subset of R where τ(x) = d. We can rewrite the sum187

as k = #σx<d(R) + k′, implying k′ = k −#σx<d(R). A visual representation of this index188

transformation can be found in Figure 1. ◀189

𝜏

𝜎𝑥>𝑑

𝜎𝑥=𝑑

𝜎𝑥<𝑑

𝑥

𝑘

𝑘′

#𝜎𝑥<𝑑

Figure 1 Representation of the link between k and k′

Queries. A (signed) join query Q is an expression of the form190

Q := R1(x1), . . . , Rm(xℓ),¬Sℓ+1(xℓ+1), . . . ,¬Sm(xm)191

where each Ri and Sj are relation symbols and xi are tuples of variables in X. In this paper,192

we consider self-join free queries, that is, we assume that any relation symbol appears at193

most once in each query. Elements of the form Ri(xi) are called positive atoms and elements194

of the form Sj(xj) are called negative atoms. The set of variables of Q is denoted by var(Q),195

the set of positive (resp. negative) atoms of Q is denoted by atoms+(Q) (resp. atoms−(Q)).196

A positive join query is a signed join query without negative atoms. A negative join query is a197

join query without positive atoms. The size |Q| of Q is defined as
∑m

i=1 |xi|, where |x| denotes198

the number of variables in x. A database D for Q is an ordered finite set D called the domain199

together with a set of relations RD
i ⊆ Dai , SD

j ⊆ Daj such that ai = |xi|. The answers of200

Q over D is the relation JQKD ⊆ Dvar(Q) defined as the set of σ ∈ DX such that for every201

i ⩽ m, σ(xi) ∈ RD
i and σ(xi) /∈ SD

i . The size |D| of the database D is defined to be the total202

number of tuples in it plus the size of its domain1, that is, |D|+
∑ℓ

i=1 |RD
i |+

∑m
i=ℓ+1 |SD

j |.203

A signed conjunctive query Q(Y) is a join query Q together with Y ⊆ var(Q), called the204

free variables of Q and denoted by free(Q). The answers JQ(Y)KD of a conjunctive query Q205

over a database D are defined as JQKD|Y , that is, they are the projection over Y of answers206

of Q.207

1 We follow the definition of [25] concerning the size of the database. Adding the size of the domain here
is essential since we are dealing with negative atoms. Hence a query may have answers even when the
database is empty, for example the query Q = ¬R(x) with RD = ∅ has |D| answers.

CVIT 2016

23:6 Direct Access for Conjunctive Queries with Negations

Direct Access tasks. Given a query Q, a database instance D on ordered domain D and a208

total order ≺ on the variables of Q, a Direct Access task [12] is the problem of returning,209

on input k, the k-th tuple JQKD[k] for the order ≺lex if k < #JQKD and fails otherwise. We210

are interested in answering Direct Access tasks using the same setting as [12]: we allow a211

precomputation phase during which a data structure is constructed, followed by an access212

phase. Our goal is to obtain – with a precomputation time that is polynomial in the size of213

D – a data structure that can be used to answer any access query in polylogarithmic time in214

the size of D.215

Hypergraphs and Signed Hypergraphs. A hypergraph H = (V, E) is defined as a set216

of vertices V and hyperedges E ⊆ 2V , that is, a hyperedge e ∈ E is a subset of V . A217

signed hypergraph H = (V, E+, E−) is defined as a set of vertices V , positive edges E+ ⊆218

2V and negative edges E− ⊆ 2V . The signed hypergraph H(Q) = (var(Q), E+, E−) of a219

signed conjunctive query Q(Y) is defined as the signed hypergraph whose vertex set is the220

variables of Q and such that E+ = {var(a) | a is a positive atom of Q} and E− = {var(a) |221

a is a negative atom of Q}. We observe that when Q is a positive query, H(Q) corresponds222

to the usual definition of the hypergraph of a conjunctive query since E− = ∅.223

Let H = (V, E) be a hypergraph. A subhypergraph H ′ of H, denoted by H ′ ⊆ H is a224

hypergraph of the form (V, E′) with E′ ⊆ E. In other word, a subhypergraph of H is a225

hypergraph obtained by removing edges in H. For S ⊆ V , we denote by H \S the hypergraph226

(V \ S, E′) where E′ = {e \ S | e ∈ E}. Given v ∈ V , we denote by E(v) = {e ∈ E | v ∈ e}227

the set of edges containing v, by NH(v) =
⋃

e∈E(v) e the neighborhood of v in H and by228

N∗H(v) = NH(v) \ {v} the open neighborhood of v. We will be interested in the following229

vertex removal operation on H: given a vertex v of H, we denote by H/v = (V \ {v}, E/v)230

where E/v is defined as {e \ {v} | e ∈ E} \ {∅} ∪ {N∗H(v)}, that is, H/v is obtained from231

H by removing v from every edges of H and by adding a new edge that contains the open232

neighborhood of v.233

Given S ⊆ V and E ⊆ 2V , a covering of S with E is a subset F ⊆ E such that S ⊆
⋃

e∈F e.234

The cover number cn(S, E) of S wrt E is defined as the minimal size of a covering of S with235

E, that is, cn(S, E) = min{|F | | F is a covering of S with E}. A fractional covering of S236

with E is a function c : E → R+ such that for every s ∈ S,
∑

e∈E(s) c(e) ⩾ 1. Observe that a237

covering is a fractional covering where c has values in {0, 1}. The fractional cover number238

fcn(S, E) of S wrt E is defined as the minimal size of a fractional covering of S with E, that239

is, fcn(S, E) = min{
∑

e∈E c(e) | c is a fractional covering of S with E}. Fractional covers240

are particularly interesting because of the following theorem by Grohe and Marx:241

▶ Theorem 2 ([19]). Let Q be a join query and λ be the fractional cover number of var(Q).242

Then for every database D, JQKD has size at most |D|λ.243

3 Ordered relational circuits244

In this section, we introduce a data structure that can be used to succinctly represent relations.245

This data structure is an example of factorised representation, such as d-representations [29],246

but does not need to be structured along a tree, which will allow us to handle more queries,247

and especially queries with negative atoms – for example β-acyclic signed conjunctive queries,248

a class of queries that cannot be represented by polynomial size d-representations [11,249

Theorem 9].250

F. Capelli and O. Irwin 23:7

3.1 Definitions251

Relational circuits. A {▷◁, dec}-circuit C on variables X = {x1, . . . , xn} and domain D is a252

multi-directed acyclic graph2 with one distinguished gate out(C) called the output of C. The253

circuit is labelled as follows:254

every gate of C with no ingoing edge, called an input of C, is labelled by either 0 or 1;255

a gate v labelled by a variable x ∈ X is called a decision gate. Each ingoing edge e of v256

is labelled by a value d ∈ D and for each d ∈ D, there is at most one ingoing edge of v257

labelled by d. This implies that a decision gate has at most |D| outgoing edges; and258

every other gate is labelled by ▷◁.259

The set of all the decision gates in a circuit C is denoted by decision(C). Given a gate v of260

C, we denote by Cv the subcircuit of C rooted in v to be the circuit whose gates are the gates261

reachable from v by following a directed path in C. We define the variable set of v, denoted262

by var(v) ⊆ X, to be the set of variables x labelling a decision gate in Cv. The variable263

evaluated by a decision gate v is denoted by decvar(v). The size |C| of a {▷◁, dec}-circuit is264

defined to be the number of edges of its underlying DAG.265

We define the relation rel(v) ⊆ Dvar(v) computed at gate v inductively as follows: if v is an266

input labelled by 0, then rel(v) = ∅. If v is an input labelled by 1, then rel(v) = D∅, that is,267

rel(v) is the relation containing only the empty tuple. Otherwise, let v1, . . . , vk be the inputs268

of v. If v is a ▷◁-gate, then rel(v) is defined to be rel(v1) ▷◁ . . . ▷◁ rel(vk). If v is a decision269

gate labelled by a variable x, rel(v) =
(
[x← ℓ(e1)] ▷◁ rel(v1)

)
∪ . . .∪

(
[x← ℓ(ek)] ▷◁ rel(vk)

)
270

where ei is the incoming edge (vi, v). It is readily verified that rel(v) is a relation on domain271

D and variables var(v). The relation computed by C over a set of variables X (assuming272

var(C) ⊆ X), denoted by relX(C), is defined to be rel(out(C))×DX\var(out(C)).273

To ease notation, we use the following convention: if v is a decision-gate and d ∈ D, we274

denote by vd the gate of C that is connected to v by an edge labeled by d.275

Deciding whether the relation computed by a {▷◁, dec}-circuit is non-empty is NP-complete276

by a straightforward reduction to model checking of conjunctive queries [14]. Such circuits are277

hence of little use to get tractability results. We are therefore more interested in the following278

restriction of {▷◁, dec}-circuits: a {×, dec}-circuit C is a {▷◁, dec}-circuit such that: (i) for279

every ▷◁-gate v of C with inputs v1, . . . , vk and i < j ⩽ k, it holds that var(vi) ∩ var(vj) = ∅,280

(ii) for every decision gate v of C labelled by x with inputs v1, . . . , vk and i ⩽ k, it holds that281

x /∈ var(vi). Checking whether the relation computed by a {×, dec}-circuit C is non-empty282

can be done in time O(|C|) by a dynamic programming algorithm propagating in a bottom-up283

fashion whether rel(v) is empty. Similarly, given a {×, dec}-circuit C, one can compute the284

size of rel(C) in polynomial time in |C| by a dynamic programming algorithm propagating285

in a bottom-up fashion |rel(v)|.286

Ordered Relational Circuits. Let X be a set of variables and ≺ an order on X. We say287

that a {×, dec}-circuit C on domain D and variables X is a ≺-ordered {×, dec}-circuit if288

for every decision gate v of C labelled with x ∈ X, it holds that for every y ∈ var(v) \ {x},289

x ≺ y. We simply say that a circuit C is an ordered {×, dec}-circuit if there exists some290

order ≺ on X such that C is a ≺-ordered {×, dec}-circuit.291

2 That is, there may be more than one edge between two nodes u and v.

CVIT 2016

23:8 Direct Access for Conjunctive Queries with Negations

210210

0,21

210210

×

𝑥4

𝑥2

⊤⊥⊤

𝑥2

⊥⊥⊤

×

𝑥3

⊤⊥⊤

𝑥1

⊥⊤⊤

Figure 2 Example of a simple ordered {×, dec}-circuit. The domain used is {0, 1, 2} and the
variable set is {x1, x2, x3, x4}. Notice how the variables on both sides of the ×-gates are interweaved.

Frontiers. A prefix assignment of size p is an assignment of variables τ ∈ D{x1,...,xp} with292

p ⩽ n. When answering direct access tasks, we will need to be able to build the subcircuit293

associated with a given prefix assignment. When dealing with {×, dec}-circuits, multiple294

gates can be reached at the same time while following a prefix assignment, due to the ×-gates.295

To handle these cases, we introduce several new notions.296

Let v be a decision gate in a {×, dec}-circuit C. We define the set sink(v) as:297

sink(v) =
{⋃

w∈inputs(v) sink(w) if v is a ×-gate

{v} otherwise (that is, v is an input or a decision gate)
298

From this definition, we can infer the following property:299

▶ Lemma 3. For any gate v, we have that the set of tuples rel(v) =×w∈sink(v) rel(w).300

Proof. We prove this by induction on the circuit. If v is a decision gate or an input, then,301

as sink(v) = {v}, the property is trivial. If v is a ×-gate, then by definition, rel(v) =302

×w∈inputs(v) rel(w). By our induction hypothesis, rel(w) =×g∈sink(w) rel(g). Therefore, by as-303

sociativity and commutativity of the Cartesian product, rel(v) =×w∈inputs(v)×g∈sink(w) rel(g) =304

×g∈
⋃

w∈inputs(v)
sink(w) rel(g) =×g∈sink(v) rel(v). ◀305

Given τ a prefix assignment, the frontier of τ fτ in C is defined algorithmically as follows:306

1. instantiate a set F with out(C), the root of the circuit307

2. as long as F is not stable, do:308

if v ∈ F is a ×-gate, F := (F \ {v}) ∪ sink(v)309

if v ∈ F is a decision gate and the variable labelling v is assigned in the prefix310

(decvar(v) ∈ {x1, . . . , xp}), F := (F \ {v}) ∪ {vτ(x)}311

3. if F contains a ⊥-gate, then fτ = ∅, otherwise fτ = F .312

If, for a given gate v, the set sink(v) contains a ⊥-gate, then the circuit is no longer313

satisfiable, which is why we return ∅ in this case. Note that this should not happen while314

building the k-th solution for C.315

Frontiers are particularly useful because they can be efficiently computed and the relation316

they represent is essentially the tuples of the relation represented by C that agree with τ . The317

F. Capelli and O. Irwin 23:9

set var(fτ) representing the set of variables of the frontier is defined as var(fτ) =
⋃

v∈fτ
var(v).318

We denote by rel(fτ) the relation on variables var(fτ) defined as×v∈fτ
rel(v).319

▶ Remark 4. For an empty prefix, we have that f⟨⟩ = sink(out). For a given prefix τ of320

length p, fτ∪{xp+1←d} can be built from the frontier of τ . Two cases can arise: either the321

variable xp+1 is evaluated by the frontier, meaning that there exists a decision gate v ∈ fτ322

such that decvar(v) = xp+1, or not. In the former case, the frontier associated with the prefix323

τ ′ = τ ∪ {xp+1} ← d is obtained by the following operation: fτ ′ = (fτ \ {v}) ∪ sink(vd). In324

the latter case, there is no gate labelled by xp+1 in the frontier, so it remains untouched,325

fτ ′ = fτ .326

For a prefix τ on variables {x1, . . . , xp}, we denote στ (R) the relation σx1=τ(x1),...,xp=τ(xp)(R).327

▶ Lemma 5. Let τ be a prefix assignment on variables {x1, . . . , xp}. Then we have that328

στ (relX(C)) = {τ} × rel(fτ)×D{xp+1,...,xn}\var(fτ).329

Proof. We prove the lemma by induction on the size of the prefix. For an empty prefix τ = ⟨⟩,330

we have fτ = sink(out(C)). Indeed, if out(C) is a decision gate or input, then it is trivial,331

otherwise we simply sink through the ×-gate since no variable is assigned. We have that332

σ⟨⟩(relX(C)) = relX(C), which is itself by definition equal to rel(out(C))×DX\var(out(C)). From333

Lemma 3, we know that rel(out(C)) =×w∈sink(out(C)) rel(w). We know that var(out(C)) =334

var(f⟨⟩). Thus, we have that σ⟨⟩(relX(C)) =×w∈sink(out(C)) rel(w)×D{x1,...,xn}\var(f⟨⟩).335

Now suppose the property holds for any prefix τ of size p. We now show that it also336

holds for a prefix τ ′ = τ × [xp+1 ← d].337

We can rewrite στ ′(relX(C)) as σxp+1=d(στ (relX(C))). From the induction hypothesis,338

we have:339

στ ′(relX(C)) = σxp+1=d

(
{τ} × rel(fτ)×D{xp+1,...,xn}\var(fτ)

)
340

From here, we have two possibilities: either there exists a decision gate v ∈ fτ such that341

decvar(v) = xp+1 or not. In the first case, we have by definition that fτ ′ = fτ \ {v}∪ sink(vd).342

We start by pointing out that for a decision gate v with xp+1 = decvar(v) and d ∈ D,343

we have σxp+1=d(rel(v)) = {[xp+1 ← d]} × rel(vd) ×Dvar(v)\({xp+1}∪var(vd)), that is that the344

relation computed by v when assigning the variable xp+1 labelling v a value d is equal to the345

relation computed by its input vd extended by the set of tuples representing the different346

valuations for the variables not evaluated by the subcircuit.347

We can therefore write:348

στ ′(relX(C)) = σxp+1=d

(
{τ} × rel(fτ)×D{xp+1,...,xn}\var(fτ)

)
349

since xp+1 only appears in the frontier :350

= {τ} ×D{xp+1,...,xn}\var(fτ) × σxp+1=d(rel(v))× ×
w∈fτ\{v}

rel(w)351

from the previous relation:352

= {τ} ×D{xp+1,...,xn}\var(fτ) × {[xp+1 ← d]} × rel(vd)×Dvar(v)\({xp+1}∪var(vd))
353

× ×
w∈fτ\{v}

rel(w)354

from Lemma 3:355

= {τ} ×D{xp+1,...,xn}\var(fτ) × {[xp+1 ← d]} × ×
w∈sink(vd)

rel(w)356

CVIT 2016

23:10 Direct Access for Conjunctive Queries with Negations

×Dvar(v)\({xp+1}∪var(vd)) × ×
w∈fτ\{v}

rel(w)357

= {τ} × {[xp+1 ← d]} ×D{xp+1,...,xn}\var(fτ) ×Dvar(v)\({xp+1}∪var(vd))
358

× ×
w∈sink(vd)

rel(w)× ×
w∈fτ\{v}

rel(w)359

= {τ ′} × ×
w∈fτ′

rel(w)×D{xp+2,...,xn}\var(τ ′)
360

In the second case, there is no gate in fτ labelled by xp+1. Since the circuit is ordered, it361

means that xp+1 /∈ var(fτ). We can therefore write:362

στ ′(relX(C)) = {τ} ××
w∈fτ

rel(w)× σxp+1=d(D{xp+1,...,xn}\var(fτ))363

since xp+1 does not appear in the frontier or τ :364

= {τ} ××
w∈fτ

rel(w)× {[xp+1 ← d]} ×D{xp+2,...,xn}\var(fτ)
365

since fτ = fτ ′ :366

= {τ ′} × ×
w∈fτ′

rel(w)×D{xp+2,...,xn}\var(fτ′)
367

Since the property is true for the empty prefix and inductively true, we conclude that it368

is true for any prefix τ . ◀369

In order to be useful in practice, building and using the frontier of a prefix assignment τ370

cannot be too expensive. We formulate the following complexity statement:371

▶ Lemma 6. Let τ be a prefix assignment over the set of variables X = {x1, . . . , xp}. We372

can compute fτ in time O(|X|).373

Proof. Let τ be a prefix assignment of size p. The frontier fτ is built in a top-down fashion,374

by following the edges corresponding to the variable assignments in τ . For each variable x375

assigned by τ , we follow at most one edge from a decision gate v such that decvar(v) = x and376

the edge is labelled τ(x). This means p edges are followed for the assignments. Moreover, to377

get to v, we might have to follow edges from ×-gates. Since the variable sets underneath378

×-gates are disjoint from one another, we have that the number of such edges is bounded by379

|X|. This implies the total cost of building the frontier fτ is O(|X|+ p) = O(|X|). ◀380

3.2 Direct Access for ordered {×, dec}-circuits381

The main result of this section is an algorithm that allows for direct access for a ordered382

{×, dec}-circuit on domain D and variables X. More precisely, we prove the following:383

▶ Theorem 7. Let ≺ be an order on X and C be a ≺-ordered {×, dec}-circuit on domain D384

and variables X, then we can have a direct access on rel(C) for the order ≺lex with access time385

polynomial in O(poly|X|polylog|D|) and precomputation time O(|C| · poly|X|polylog|D|).386

Precomputation. In this section, we assume that C is a ≺-ordered {×, dec}-circuit with387

respect to X. The count label of C, denoted by nrelC , is the mapping from decision(C)×D388

to N such that nrelC(v, d) = #σx⩽d(rel(v)), that is, nrelC(v, d) is the number of tuples from389

rel(v) that assign a value on x smaller or equal than d. The precomputation step aims to390

compute nrelC so that we can access nrelC(v, d) quickly.391

F. Capelli and O. Irwin 23:11

Our algorithm performs a bottom-up computation of the number of satisfying tuples in392

rel(v) for every gate v of C. If v is a decision-gate on variable x, then rel(v) is defined as a393

disjoint extended union from the relation computed by its input. It is then easy to see that:394

|rel(v)| =
∑

w∈input(v)

|rel(w)| × |D||∆(v,w)| where ∆(v, w) = var(v) \ ({x} ∪ var(w)). (1)395

Similarly, nrelC(v, d) can be computed by restricting the previous relation on the inputs396

of v that set x to a value d′ ⩽ d, that is:397

nrelC(v, d) =
∑

w∈input(v),ℓ(w,v)⩽d

|rel(w)| × |D||∆(v,w)|. (2)398

Observe that from this relation, we can deduce that for a decision gate v, if d′ ∈ D does399

not label any edge (w, v) then nrelC(v, d′) = nrelC(v, d) where d is the largest value such that400

d < d′. For a decision gate v of C, we will hence only compute nrelC(v, d) for d ∈ D such401

that there is an edge (w, v) labeled by d.402

Finally, if v is a Cartesian product, we clearly have |rel(v)| =×w∈input(v) |rel(w)|. Hence,403

one can compute nrelC using a dynamic algorithm that inductively computes nrelC(v, d) for404

each decision-gate v of the circuit and also |rel(v)| and var(v) for every gate.405

More precisely, the dynamic programing algorithm works as follows: we start by performing406

a topological ordering of the gates of C that is compatible with the underlying DAG of the407

circuit. In particular, it means that for a gate v and an input w of v, the topological ordering408

has to place w before v. Moreover, we also add the following constraint: if w and w′ are409

both inputs of a decision gate v and if the edge (w, v) is labeled by d ∈ D and the edge410

(w′, v) is labeled by d′ ∈ D such that d < d′, then we ask for the topological order to place w411

before w′. It easy easy to construct such an ordering by simply doing a topological order of412

the DAG of C augmented by edges (w, w′) where w and w′ are inputs of the same decision413

gate v and (w, v) has a label smaller than (w′, v). This modified DAG has size at most 2|C|414

and since computing a topological ordering of a DAG can be done in linear time, we can415

construct it in time O(|C|).416

Now, we dynamically compute |rel(v)|, var(v) for every gate v and nrelC(v, d) for every417

gate v ∈ C and d ∈ D as follows: we start by allocating two tables Trel and Tvar of size |C|418

and a table TnrelC of size |C| where each entry of TnrelC is intialized with an array of size |D|419

where each entry is initialized as −1. We then populate each entry of these tables following420

the previously constructed topological ordering and using the relations written above (see421

(1) and (2)) and the fact that var(v) =
⋃

w∈input(v) var(w). To compute nrelC for a decision-422

gate v, we let (w0, v), . . . , (wk, v) be the incoming edge of v ordered by increasing labelled423

d0 < · · · < dk. We then initialize TnrelC [v, d0] with nrelC(v, d0) = |rel(w0)| · |D||∆(v,w0)| and424

compute TnrelC [v, di+1] as TnrelC [v, di] + |rel(wi+1)| · |D||∆(v,wi+1)| using relation (2).425

An example of an ordered {×, dec}-circuit that has been annotated by our algorithm is426

presented in Figure 3.427

It is clear from the relations (2) that at the end of this precomputation, we have TnrelC [v, d]428

contains nrelC(v, d) if d labels an incoming edge of v. In practice, we will not need to access429

nrelC(v, d′) for other values d′ ∈ D but we observe here that we can still compute it in time430

polylog(|D|) from TnrelC and C as follows: we can find the largest d ∈ D such that d labels431

an incoming edge of v and d < d′ using a binary search on the input edges of v and return432

TnrelC [v, d] if such a d exists and 0 otherwise. We hence have:433

CVIT 2016

23:12 Direct Access for Conjunctive Queries with Negations

0

0 1

0 1 2

1

0 1

0 1 2

2

2

0 1 2

𝑥1

𝑥2

𝑥3

⊤ ⊤ ⊥

𝑥2

𝑥3

⊥ ⊤ ⊤

×

𝑥2

⊤ ⊥ ⊤

[1, 2, 2] [0, 1, 2] [1, 1, 2]

[2, 4, 4] [2, 4, 6] 4

[4, 10, 14]

Figure 3 Example of a simple, annotated {×, dec}-circuit. The domain used is {0, 1, 2} for
variables x1, x2 and x3. The lists shown to the left of the decision gates represent the values of nrelC
for those gates.

▶ Lemma 8 (Precomputation complexity). Given a ≺-ordered {×, dec}-circuit C, we can434

compute a data structure in time O(|C| · poly|X|polylog|D|) that allows us to access var(v),435

|rel(v)| for every gate v of C in time O(1) and nrelC(v, d) for every decision gate v and436

d ∈ D in time O(polylog(|D|)).437

Proof. The data structure simply consists in the three tables TnrelC , Trel and Tvar. It is easy438

to see that each entry of Tvar can be computed in time O(poly(|X|) since we only have to439

compute union of sets of elements in X hence one can compute Tvar with O(|C|poly(|X|)).440

Now observe that to compute TnrelC , one has to perform at most two arithmetic operations441

for each edge of C. Indeed, to compute Trel[v], one has to perform at most one addition and442

one multiplication for each w ∈ input(v), whose cost can be associated to the edge (w, v).443

Similarly, to compute TnrelC [v, d] as described in the previous paragraph, we do one addition444

and one multiplication for each edge (w, v) in the circuit. Hence, we perform at most O(|C|)445

arithmetic operations. Now, the cost of these arithmetic operations is polynomial in the size446

of the integer they are performed on. Since these integers are sizes of relation on domain447

D and variable Y ⊆ X, their value is at most |D||X| and they can be encoded on |X|log|D|448

bits. Hence, we have a total complexity of O(|C|poly|X|polylog|D|). ◀449

Direct access. We now show how the precomputation from Lemma 8 allows us to get direct450

access for ordered {×, dec}-circuits. We first show how one can solve a direct access task for451

any relation as long as we have access to very simple counting oracles. We then show that452

one can quickly simulate these oracle calls in ordered {×, dec}-circuits using precomputed453

values and conclude.454

▶ Lemma 9. Assume that we are given a relation R ⊆ DX with X = {x1, . . . , xn} and455

an oracle such that for every prefix assignment τ ∈ D{x1,...,xp} and d ∈ D, it returns456

σxp+1⩽d(#στ (R)). Then, for any k ⩽ |R|, we can compute R[k] using O(npolylog|D|) oracle457

calls, where n = |X|.458

F. Capelli and O. Irwin 23:13

Proof. We prove this lemma by induction: we show that for every relation of R arity n, we459

can compute R[k] using n · ⌈log|D|⌉ oracle calls. We start by considering that R is a relation460

on one variable x. Let α = R[k]. We are looking for d ∈ D such that α(x) = d. In this461

case, since x = min(var(R)), we know from Lemma 1 that d is the minimal value such that462

#σx⩽d(R) ⩾ k. We can compute d by doing a dichotomic search on the domain values using463

⌈log|D|⌉ calls to the oracle since the value #σx⩽d(R) increases when d increases.464

Now, assume that the property holds for relations on variable sets of size n, that is, that465

we can find the k-th solution with n · ⌈log|D|⌉ oracle calls. Let R be a relation on a set of466

variables {x1, . . . , xn+1}. From Lemma 1, we know that R[k] = R′[k′], where R′ = σx1=d1(R),467

d1 is the minimal value such that σx1⩽d1(R) ⩾ k and k′ = k−#σx1<d1(R). As we saw earlier,468

we can find d1 using ⌈log|D|⌉ oracle calls of the form #σx1⩽d(R) and using a dichotomic469

search on d.470

Now, by induction, we are able to compute R′[k′] using n · ⌈log|D|⌉ oracle calls of471

the form #σxp+1⩽d(στ ′(R′)) for τ ′ an assignment of D{x2,...,xp . However, observe that472

#σxp+1⩽d(στ ′(R′)) = #σxp+1⩽d(στ (R)) with τ = τ ′ × [x1 ← d1] since R′ = σx1=d1(R).473

Hence we can compute R[k] using ⌈log|D|⌉+ n · ⌈log|D|⌉ = (n + 1)⌈log|D|⌉ oracle calls to474

relation R, which concludes the induction step. ◀475

In order to evaluate the true complexity of answering direct access tasks, we now also476

have to evaluate the complexity of a single oracle call.477

▶ Lemma 10. Let C be a circuit such that nrelC(v, d) and var(v) have been precomputed and478

can be access in time O(polylog(|D|)) for every gate v of C and d ∈ D. Let τ be a prefix479

assignment of D{x1,...,xp} and d ∈ D, then #σxp+1⩽d(στ (rel(C))) can be computed in time480

O(poly(n)polylog|D|), where n = |X|.481

Proof. We start by building the frontier fτ associated with the prefix assignment τ . From482

Lemma 6, we know this can be done in time O(n). By Lemma 5:483

We can rewrite:484

σxp+1⩽d(στ (rel(C))) = σxp+1⩽d({τ} × rel(fτ)×D{xp+1,...,xn}\var(fτ))485

= {τ} × σxp+1⩽d(rel(fτ)×D{xp+1,...,xn}\var(fτ))486

There are now two possible outcomes: either xp+1 is tested by fτ or not. In the first case,487

since xp+1 only appears in the frontier, tested by a gate v, we have:488

σxp+1⩽d(στ (rel(C))) = {τ} × σxp+1⩽d(rel(v))× ×
w∈fτ\{v}

rel(w)×D{xp+1,...,xn}\var(fτ)
489

Hence σxp+1⩽d(στ (rel(C))) can be computed as:490

#σxp+1⩽d(στ (rel(C))) = #σxp+1⩽d(rel(v))×
∏

w∈fτ\{v}

#rel(w)× |D||{xp+1,...,xn}\var(fτ)|
491

= nrelC(v, d)×
∏

w∈fτ\{v}

#rel(w)× |D||{xp+1,...,xn}\var(fτ)|.492

The values of nrelC(v, d) and of #rel(w) for w ∈ fτ \ {v} have been precomputed and493

can be accessed in time O(polylog(|D|)). Now by definition var(fτ) =
⋃

v∈fτ
var(v). Hence,494

since var(v) has been precomputed, we can compute |{xp+2, . . . , xn} \ var(fτ)| in O(n).495

The multiplication has at most n elements, the cost of this operation is therefore simply496

O(poly(n)polylog|D|).497

CVIT 2016

23:14 Direct Access for Conjunctive Queries with Negations

In the second case where xp+1 is not tested by fτ , we have that xp+1 /∈ var(fτ) since the498

circuit is ordered. Hence, we apply a similar reasoning to obtain:499

#στ∧xp+1⩽d(rel(C)) = #σxp+1⩽d(D{xp+1}) · |D||{xp+2,...,xn}\var(fτ)| ·
∏

w∈fτ

#rel(w)500

The value of #σxp+1⩽d(D{xp+1}) is simply rank(d). As before, we can compute the501

multiplication in O(poly(n)polylog|D|). ◀502

In short, we can follow the edges in the circuit by choosing the correct edge from the503

precomputed values in nrelC . A short visual example of the followed paths for different direct504

access tasks over the same annotated circuit is presented in Figure 4. Notice how in the case505

where k = 13, the fact that we meet a ×-gate implies that we follow both paths at once. At506

one point of the algorithm, a frontier containing both the gates for x2 and x3 exists. The507

values shown at the right of the reached decision gates show how the index of the searched508

tuples evolves during a run of the search algorithm.509

0

0 1

0 1 2

1

0 1

0

2

2

0 1 21 2

𝑥1

𝑥2

𝑥3

⊤ ⊤ ⊥

𝑥2

𝑥3

⊥

×

𝑥2

⊤ ⊥ ⊤⊤ ⊤

[1, 2, 2] [0, 1, 2] [1, 1, 2]

[2, 4, 4] [2, 4, 6] 4

[4, 10, 14] 7

3

1

(a) k = 7

0

0 1

0 1 2

1

0 1

0

2

2

01 2 1 2

𝑥1

𝑥2

𝑥3

⊤ ⊤ ⊥

𝑥2

𝑥3

⊥

×

𝑥2

⊤⊤ ⊤ ⊥ ⊤

[1, 2, 2] [0, 1, 2] [1, 1, 2]

[2, 4, 4] [2, 4, 6] 4

[4, 10, 14] 13

31

(b) k = 13

Figure 4 Examples of the paths followed during different direct access tasks on the same annotated
ordered {×, dec}-circuit.

The proof of Theorem 7 is now an easy corollary of Lemmas 9 and 10. Indeed, after510

having precomputed nrelC and var using 8, we can answer direct access tasks using the oracle511

based algorithm from Lemma 9 and Lemma 10 shows that these oracle accesses are in fact512

tractable in ordered circuits.513

4 From join queries to ordered {×, dec}-circuits514

In this section, we present a simple top-down algorithm, that can be seen as an adaptation515

of the exhaustive DPLL algorithm from [32], such that on input Q, ≺ and D, it returns a516

≻-ordered {×, dec}-circuit C such that rel(C) = Q(D), where Q is a join query, ≺ an order517

on its variables and D a database. Exhaustive DPLL is an algorithm that has been originally518

devised to solve the #SAT problem. It has been observed by Huang and Darwiche [20]519

that the trace of this algorithm implicitly builds a Boolean circuit, corresponding to the520

F. Capelli and O. Irwin 23:15

{×, dec}-circuits on domain {0, 1}, enjoying interesting tractability properties. We show521

how to adapt it in the framework of signed join queries. The algorithm itself is presented522

in Section 4.1. We study the complexity of this algorithm in Section 4.3 depending on the523

structure of Q and ≺, using hypergraph structural parameters introduced in Section 4.2.524

4.1 Exhaustive DPLL for signed join queries525

The main idea of DPLL for signed join queries is the following: given an order ≺ on the526

variables of a join query Q and a database D, we construct a ≻-ordered {×, dec}-circuit527

(where x ≻ y iff y ≺ x)3 computing JQKD by successively testing the variables of Q with528

decision gates, from the highest to the lowest wrt ≺. At its simplest form, the algorithm529

picks the highest variable x of Q wrt ≺, creates a new decision gate v on x and then, for530

every value d ∈ D, sets x to d and recursively computes a gate vd computing the subset531

of JQKD where x = d. We then add vd as an input of v and proceed with the next value532

d′ ∈ D. This approach is however not enough to get interesting tractability results. We533

hence add the following optimizations. First, we keep a cache of already computed queries so534

that if we recursively call the algorithm twice on the same input, we can directly return the535

previously constructed gate. Moreover, if we detect that the answers of Q are the Cartesian536

product of two or more subqueries Q1, . . . , Qk, then we create a new ×-gate v, recursively537

call the algorithm on each component Qi to construct a gate wi and plug each wi to v.538

Detecting such cases is mainly done syntactically, by checking whether the query can be539

partitionned into subqueries having disjoint variables. However, this approach would fail540

to give good complexity bounds in the presence of negative atoms. To achieve the best541

complexity, we also remove from Q every negative atom as soon as they are satisfied by542

the current partial assignment. This allows us to discover more cases where the query has543

connected components.544

The theoretical performance of the previously described algorithm may however vary if545

one is not careful in the way the recursive calls are actually made. We hence give a more546

formal presentation the algorithm, whose pseudocode is presented in Algorithm 1, on which547

we will be able to prove good upper bounds in Section 4.3. Since we are not yet insterested in548

complexity analysis, we deliberately let the underlying datastructures for encoding relations549

unspecified and delay this discussion to Section 4.3.550

A few notations are used in Algorithm 1. Given a database D on domain D and a tuple551

τ ∈ DY , we denote by JQKD
τ the set of tuples σ ∈ Dvar(Q)\Y that are answers of Q when552

extended with τ . More formally, σ ∈ JQKD
τ if and only if (σ × τ)|var(Q) ∈ JQKD. Given an553

atom R(x), a database D and a tuple τ ∈ DY , we say that R(x) is inconsistent with τ wrt554

D (or simply inconsistent with τ when D is clear from context) if there is no σ ∈ RD such555

that τ ≃ σ. Observe that if Q contains a positive atom R(x) that is inconsistent with τ then556

JQKD
τ = ∅. Similarly, if Q contains a negative atom ¬R(x) such that τ assigns every variable557

of x and τ(x) ∈ R, then JQKD
τ = ∅. If one of this case arises, we say that Q is inconsistent558

with τ . Now observe that if ¬R(x) is a negative atom of Q such that R(x) is inconsistent559

with τ , then JQKD
τ = JQ′KD

τ ×DW where Q′ = Q \ {¬R(x)} and W = var(Q) \ var(Q′) (some560

variables of Q may only appear in the atom ¬R(x)). This motivates the following definition:561

the simplification of Q wrt to τ and D, denoted by Q ⇓ ⟨τ, D⟩ or simply by Q ⇓ τ when D562

is clear from context, is defined to be the subquery of Q obtained by removing from Q every563

3 While one could easily change the algorithm so that it produces a ≺-ordered {×, dec}-circuit instead,
the structural parameters we will be considering for the tractability of DPLL in Section 4.2 are more
naturally defined on ≺. We choose to present DPLL this way to ease the proofs later.

CVIT 2016

23:16 Direct Access for Conjunctive Queries with Negations

Algorithm 1 An algorithm to compute a ≻-ordered {×, dec}-circuit representing JQKD

1: procedure DPLL(Q, τ, D,≺)
2: if (Q, τ) is in cache then return cache(Q, τ)
3: if Q is inconsistent with τ then return ⊥-gate
4: if τ assigns every variable in Q then return ⊤-gate
5: x← max≺ var(Q)
6: for d ∈ D do
7: τ ′ ← τ × [x← d]
8: if Q is inconsistent with τ ′ then vd ← ⊥-gate
9: else

10: Let Q1, . . . , Qk be the τ ′-connected components of Q ⇓ τ ′

11: for i = 1 to k do
12: wi ← DPLL(Qi, τi, D,≺) where τi = τ ′|var(Qi)
13: end for
14: vd ← new ×-gate with inputs w1, . . . , wk

15: end if
16: end for
17: v ← new dec-gate connected to vd by a d-labelled edge for every d ∈ D

18: cache(Q, τ)← v

19: return v

20: end procedure

negative atom ¬R(x) of Q such that R(x) is inconsistent with τ . From what precedes, we564

clearly have JQKD
τ = JQ′KD

τ ×DW where Q′ = Q ⇓ ⟨τ, D⟩ and W = var(Q) \ var(Q′).565

For a tuple τ ∈ DY assigning a subset Y of variables of Q, the τ -intersection graph IQ
τ566

of Q is the graph whose vertices are the atoms of Q having at least one variable not in Y567

and there is an edge between two atoms a, b of Q if a and b share a variable that is not in568

Y . Observe that IQ
τ does not depend on the values of τ but only on the variables it sets.569

Hence it can be computed in polynomial time in the size of Q only. A connected component570

C of IQ
τ naturally induces a subquery QC of Q and is called a τ -connected component. Q is571

partitioned into its τ -connected components and the atoms whose variables are completely572

set by τ . More precisely, Q =
⋃

C∈CC QC ∪ Q′ where CC are the connected component of573

IQ
τ and Q′ contains every atom a of Q on variables x such that x only has variables in Y .574

Observe that if τ is an answer of Q′, then JQKD
τ =×C∈CC JQCKD

τC
where τC = τ |var(QC) since575

if C1 and C2 are two distinct τ -connected components of IQ
τ , then var(QC1) ∩ var(QC2) ⊆ Y .576

We illustrate the previous definitions on the signed join query Q(x1, . . . , x5) defined as577

¬R(x1, . . . , x5), S(x1, x2, x3), T (x1, x4, x5) and database D on domain {0, 1} with RD =578

{(1, 1, 1, 1, 1)}. Let τ = [x1 ← 0]. The τ -intersection graph of Q is a path where579

¬R(x1, . . . , x5) is connected to S(x1, x2, x3) and T (x1, x4, x5). There is no edge between580

S(x1, x2, x3) and T (x1, x4, x5) since x1 is their only common variable and it is assigned581

by τ . Hence, Q has one τ -connected component containing every atom of Q. Now,582

Q ⇓ τ = S(x1, x2, x3), T (x1, x4, x5) since R(0, x2, . . . , x5) is inconsistent over D and the583

τ -intersection graph of Q ⇓ τ consists in two isolated vertices S(x1, x2, x3) and T (x1, x4, x5).584

Hence Q ⇓ τ has two τ -connected components. This example also illustrates the role of585

simplification for discovering Cartesian products.586

Algorithm 1 uses the previous observations to produce a ≻-ordered {×, dec}-circuit. More587

precisely:588

F. Capelli and O. Irwin 23:17

▶ Theorem 11. Let Q be a signed join query, D a database and ≺ an order on var(Q), then589

DPLL(Q, ⟨⟩, D,≺) constructs a ≻-ordered {×, dec}-circuit C and returns a gate v of C such590

that rel(v) = JQKD.591

Proof. The proof is by induction on the number of variables of Q that are not assigned592

by τ . We claim that DPLL(Q, τ, D,≺) returns a gate computing JQKD
τ which is stored into593

cache(Q, τ). If every variable are assigned, then DPLL(Q, τ, D,≺) returns either a ⊤-gate594

or a ⊥-gate depending on whether τ is inconsistent with Q or not, which clearly is JQKD
τ .595

Otherwise, it returns and add in the cache a decision gate v connected to a gate vd by596

a d-labelled edge for each d ∈ D. We claim that vd computes JQKD
τ×[x←d]. It is enough597

since in this case, by definition of the relation computed by a decision-gate, v computes598 ⋃
d∈D JQKD

τ×[x←d] × [x← d] = JQKD
τ .599

To prove that vd computes JQKD
τ ′ where τ ′ = τ × [x ← d], we separate two cases: if τ ′600

is inconsistent with Q then JQKD
τ ′ is empty and vd is a ⊥-gate, which is what is expected.601

Otherwise, let Q1, . . . , Qk be the τ ′-connected components of Q ⇓ τ ′ and let τi = τ ′|var(Qi).602

From what precedes, we have JQKD
τ ′ =×k

i=1 JQiK
D
τi

. The algorithm uses a gate wi from603

Line 12, obtained from a recursive call to DPLL(Qi, τi, D,≺) where the number of variables604

not assigned by τi in Qi is less than the number of variables unassigned by τ in Q. Hence,605

by induction, wi computes JQiK
D
τi

and since vd is a ×-gate connected to each wi, we indeed606

have rel(vd) =×k

i=1 JQiK
D
τi

. ◀607

The worst case complexity of DPLL may be high when no cache hit occur which would608

result in at least |D|fcn(Q) recursive calls by Theorem 2. However, when ≺ has good609

properties wrt Q, we can prove better bounds. Section 4.2 proposes a way of measuring610

the complexity of an elimination order wrt Q and Section 4.3 gives upper bounds on the611

complexity of DPLL depending on this measure.612

4.2 Hyperorder width613

In this section, we introduce the notion of width that is relevant to pinpoint the complexity614

of the DPLL procedure previously described on signed join queries. Our decomposition615

is not based on hypertree decompositions but rather on elimination orders. We introduce616

several notions of widths for elimination orders on (signed) hypergraphs that will be used to617

establish the following complexity bounds:618

Order based widths (how(·), fhow(·)). A hypergraph H = (V, E) and an order ≺ such that619

V = {v1, . . . , vn} with v1 ≺ · · · ≺ vn induces a series of hypergraphs defined as H≺1 , . . . , H≺n+1620

as H≺1 = H and H≺i+1 = H≺i /vi. The hyperorder width how(H,≺) of ≺ wrt H is defined as621

maxi⩽n cn(NH≺
i

(vi), E). The hyperorder width how(H) of H is defined as the best possible622

width using any elimination order, that is, how(H) = min≺ how(H,≺). We similarly define623

the fractional hyperorder width fhow(H,≺) of ≺ wrt H as maxi⩽n fcn(NH≺
i

(vi), E) and the624

fractional hyperorder width fhow(H) of H as fhow(H) = min≺ fhow(H,≺).625

It has already been observed in many work ([23, Appendix C] or [16, 17, 24]) that626

how(H) and fhow(H) are respectively equal to the generalized hypertree width and the627

fractional hypertree width of H and that there is a natural correspondence between a tree628

decomposition and an elimination order having the same width. However, to be able to629

express our tractability results as function of the order, it is more practical to define the630

width of orders instead of hypertree decompositions. In [8, Definition 9], fhow(H,≺) is called631

the incompatiblity number, though it is not formally defined on hypergraphs but directly on632

CVIT 2016

23:18 Direct Access for Conjunctive Queries with Negations

conjunctive queries. The case k = 1, which corresponds to the α-acyclicity of the underlying633

hypergraph, has been also previously call an order without disruptive trio [12]. However,634

these notions are specifically used for the problem of direct access in conjunctive queries while635

the characterization of hypergraph measures in terms of elimination orders of hypergraphs636

predates by several years this terminology (see [6] for a survey). In this paper, we decided to637

have a terminology closer to the usual terminology for hypergraphs decompositions, where638

we replace the usual tree decompositions by order decompositions. It will be specifically639

useful for the hereditary order based widths.640

Hereditary order based widths (β-how(·), β-fhow(·)). One shortcoming of (fractional)641

hypertree width is that it is not hereditary. That is, the (fractional) hypertree width of a642

subhypergraph can be much bigger than the (fractional) hypertree width of the hypergraph643

itself. It makes it not well suited to discover tractable classes for signed join queries. Indeed,644

if a query Q contains a negative atom ¬R(x) and if RD is empty in the database D, then645

JQKD is equal to JQ′KD, where Q′ = Q \ {¬R(x)}. Hence if some aggregation problem646

for a fixed self-join free query Q on an input database D can be solved in O(poly(|D|))647

for any database D, it has to be tractable for every Q′ obtained by removing a subset of648

the negative atoms from Q. This motivates the following definitions: for a hypergraph649

H = (V, E) and an order ≺ on V , the β-hyperorder width β-how(H,≺) of ≺ wrt to H is650

defined as maxH′⊆H how(H ′,≺). The β-hyperorder width β-how(H) of H is defined as the651

width of the best possible elimination order, that is, β-how(H) = min≺ β-how(H,≺). We652

define similarly the β-fractional hyperorder width of an order ≺ and of an hypergraph –653

β-fhow(H,≺) and β-fhow(H) – by replacing how(·) by fhow(·) in the definitions.654

Comparison with existing measures. The fact that fractional hypertree width is not655

hereditary has traditionnally been worked around by taking the largest width over every656

subhypergraph. In other words, the β-fractional hypertree width β-fhtw(H) of H is defined657

as β-fhtw(H) = maxH′⊆H fhtw(H ′). The β-hypertree width β-htw(H) is defined similarly. If658

one plugs the ordered characterisation of fhtw(H ′) in this definition, one can observe that659

β-fhtw(H) = maxH′⊆H min≺ fhow(H ′,≺). Hence, the difference between β-fhtw(H) and660

β-fhow(H) boils down to inverting the min and the max in the definition. It directly gives661

that β-fhtw(H) ⩽ β-fhow(H) and β-htw(H) ⩽ β-how(H) for every H. The main advantage662

of the β-fractional hyperorder width is that it comes with a natural notion of decomposition663

— the best elimination order ≺ — that can be used algorithmically. This is not given by the664

definition of β-fhtw(·) and has yet to be found.665

The only exception is the case where β-fhtw(H) = 1, known as β-acyclicity, where an666

order-based characterisation is known and has been used to show the tractability of many667

problems such as SAT [30], #SAT or #CQ for β-acyclic instances [11, 7]. The elimination668

order is based on the notion of nest points. In a hypergraph H = (V, E), a nest point is669

a vertex v ∈ V such that E(v) is ordered by inclusion, that is, E(v) = {e1, . . . , ep} with670

e1 ⊆ · · · ⊆ ep. A β-elimination order (v1, . . . , vn) for H is an ordering of V such that for671

every i ⩽ n, vi is a nest point of H \ {v1, . . . , vi−1}. A closer inspection of the definition672

of β-elimination order ≺ shows that β-fhow(H,≺) = β-how(H,≺) = 1, showing that iy673

corresponds to β-acyclicity. We can actually prove a more general result: the notion of674

β-acyclicity has been recently generalised by Lanzinger in [25] using a notion called nest sets.675

A set of vertices S ⊆ V is a nest set of H if {e \ S | e ∈ E, e∩ S ̸= ∅} is ordered by inclusion.676

A nest set elimination order is a list Π = (S1, . . . , Sp) such that:677 ⋃p
i=1 Si = 1,678

F. Capelli and O. Irwin 23:19

Si ∩ Sj = ∅ and679

Si is a nest set of H \
⋃

j<i Sj .680

The width of a nest set elimination is nsw(H, Π) = maxi |Si| and the nest set width nsw(H)681

of H is defined to be the smallest possible width of a nest set elimination order of H. It682

turns out that our notion of width generalises the notion of nest set width, that is, we have683

β-how(H) ⩽ nsw(H). More particularly, any order ≺ obtained from a nest set elimination684

order Π = (S1, . . . , Sp) by ordering each Si arbitrarely verifies nsw(H, Π) ⩾ β-how(H,≺).685

We summarise and give formal proofs of the above discussion in the following theorem:686

▶ Theorem 12. For every hypergraph H = (V, E), we have: β-htw(H) ⩽ β-how(H) ⩽687

nsw(H). In particular, if H is β-acyclic then β-how(H) = 1.688

The proof mainly follows from the following lemma:689

▶ Lemma 13. Let H = (V, E) be a hypergraph and S be a nest set of H of size k. We let690

f to be the maximal element (for inclusion) of {e \ S | e ∈ E, e ∩ S ≠ ∅}, which exists by691

definition and (s1, . . . , sk) an ordering of S. For every i ⩽ k and e an edge of H/s1/ . . . /si,692

then either e ∩ S ̸= ∅ and e ⊆ f ∪ S or e ∩ S = ∅ and e is an edge of H \ {s1, . . . , si}.693

Proof. We prove this lemma by induction on i. For i = 0, it is clear since if e ∩ S ̸= ∅, then694

e\S ⊆ f by definition of f . Hence e ⊆ f ∪S. Now, assuming the hypothesis holds for some i,695

let Hi = H/s1/ . . . /si and Hi+1 = Hi/si+1. By definition, the edges of Hi+1 are the edges of696

Hi without the vertex si+1 and with the additional edge N∗Hi
(si+1). Let e be an edge of Hi+1697

that is not N∗Hi
(si+1). Either e was in Hi in which case the induction hypothesis still holds.698

Or e = e′ \ {si+1} for some edge e′ of Hi. By induction, since e′ ∩ S ̸= ∅, e′ ⊆ f ∪ S. Hence699

e = e′ \{si+1} ⊆ f ∪S and the induction hypothesis follows. Now assume e = N∗Hi
(si+1). By700

induction, every edge of Hi that contains si+1 is contained in f ∪S hence N∗Hi
(si+1) ⊆ f ∪S701

and the induction follows. ◀702

Proof of Theorem 12. The inequality β-htw(H) ⩽ β-how(H) is straightforward using:703

β-htw(H) = maxH′⊆H min≺ how(H ′,≺)704

β-how(H) = min≺maxH′⊆H how(H ′,≺)705

Indeed, let ≺0 be an elimination order that is minimal for β-how(H,≺). By definition,706

for H ′ ⊆ H, how(H ′,≺0) ⩾ min≺ how(H ′,≺). Hence707

β-how(H) = max
H′⊆H

how(H ′,≺0) ⩾ max
H′⊆H

min
≺

how(H ′,≺) = β-htw(H).708

We now prove β-how(H) ⩽ nsw(H). Let k = nsw(H) and Π = (S1, . . . , Sp) a nest set709

elimination of H of width k, that is, for every i, |Si| ⩽ k. Let≺ be an order on V = (v1, . . . , vn)710

with v1 ≺ · · · ≺ vn, obtained from Π by ordering each Si arbitrarely, that is, if x ∈ Si and711

y ∈ Sj with i < j, we require that x ≺ y. We claim that β-how(H,≺) ⩽ nsw(H, Π). First712

of all, we observe that if (S1, . . . , Sp) is a nest set elimination order for H, then it is also a713

nest set elimination order for every H ′ ⊆ H, which is formally proven in [25, Lemma 4]4.714

Consequently, it is enough to prove that how(H,≺) ⩽ k. This follows from Lemma 13. Indeed,715

let (v1, . . . , vt) be the prefix of (v1, . . . , vn) such that S1 = {v1, . . . , vt}. By Lemma 13, when716

vi+1 is removed from H≺i = H/v1/ . . . /vi, then Ni+1 = NHi(vi+1) is included in f ∪S1 since717

Ni+1 ∩ S1 ̸= ∅ (both contain vi+1). Hence Ni+1 is covered by at most t edges: f – which718

4 Lemma 4 of [25] establishes the result for a connected subhypergraph of H but the same proof works
for non-connected subhypergraphs.

CVIT 2016

23:20 Direct Access for Conjunctive Queries with Negations

contains at least one element of S1 – plus at most one edge for each remaining element of S1.719

Hence, up to the removing of vt, the hyperorder width of ≺ is at most t ⩽ k. Now, when720

removing (v1, . . . , vt) from H, by Lemma 13 again, H≺t = H \ {v1, . . . , vt} since no edge of721

H≺t has a non-empty intersection with S1. It follows that S2 is a nest set of H≺t and we722

can remove it in a similar way to S1 and so on. Hence β-how(H,≺) ⩽ k = nsw(H, Π) which723

settles the inequality stated in the theorem.724

It directly implies that if H is β-acyclic then β-how(H) = 1 since if H is β-acyclic, then725

nsw(H) = 1 and β-how(H) ⩽ nsw(H) = 1 by the previously established bound. ◀726

The goal of this paper is not to give a thorough analysis of β-fractional hyperorder width727

so we leave for future research several questions related to it. We observe that we do not728

know the exact complexity of computing or approximating the β-fractional hyperorder width729

of an input hypergraph H. It is very likely hard to compute exactly since it is not too730

difficult to observe that when H is a graph, β-fhow(H) is sandwiched between the half of731

the treewidth of H and the treewidth of H itself and it is known that treewidth is NP-hard732

to compute [4]. We also leave open many questions concerning how β-fractional hyperorder733

width compares with other widths such as (incidence) treewidth, (incidence) cliquewidth or734

MIM-width. For these measures of width, #SAT, a problem close to computing the number735

of answers in signed join queries, is known to be tractable (see [11] for a survey). We leave736

open the most fundamental question of comparing the respective powers of β-fhtw(·) and737

β-fhow(·):738

▶ Open Question 14. Does there exist a family (Hn)n∈N of hypergraphs such that (β-fhtw(Hn))n∈N739

is bounded by a constant k ∈ N while (β-fhow(Hn))n∈N is unbounded?740

One may wonder why the definition of β-hyperorder width has not appeared earlier in the741

literature, as it just boils down to swapping a min and a max in the definition of β-hypertree742

width while enabling an easier algorithmic treatment. We argue that the expression of743

hypertree width in terms of elimination orders – which is not the widespread way of working744

with this width in previous literature – is necessary to make this definition interesting. Indeed,745

if one swaps the min and max in the traditional definition of β-hypertree width, we get746

the following definition: β-htw′(H, T) = minT maxH′⊆H htw(H ′, T) where T runs over every747

tree decomposition of H and hence is valid for every H ′ ⊆ H since, as every edge of H is748

covered by T , so are the edges of H ′. This definition, while being obtained in the same way749

as β-how(·), is not really interesting however because it does not generalise the notion of750

β-acyclicity:751

▶ Lemma 15. There exists a family of β-acyclic hypergraphs (Hn) such that for every n ∈ N,752

β-htw′(Hn) = n.753

Proof. Consider the hypergraph Hn whose vertex set is [n] and edges are {0, i} for i > 0754

and [n]. That is Hn is a star centered in 0 and has an edge containing every vertex. Hn is755

clearly β-acyclic (any elimination order that ends with 0 is a β-elimination order) but we756

claim that β-htw′(Hn) = n. Indeed, let T be a tree decomposition for Hn. By definition, it757

contains a bag that contains [n]. Now consider the subhypergraph H ′n of Hn obtained by758

removing the edge [n]. The hypertree width of T wrt H ′n is n since one needs the edge {i, 0}759

to cover vertex i in the bag [n] since i appears only in this edge. ◀760

Signed hyperorder width. In the case of signed join queries, one can deal with positive761

and negative atoms differently, which is not reflected by the definition of β-fhow(·). We762

generalise these widths to signed hypergraphs by taking subhypergraphs only on the negative763

F. Capelli and O. Irwin 23:21

part, generalising a notion of acyclicity introduced by Brault-Baron in [5] that mixes β-764

and α-acyclicities for signed hypergraphs. Let H = (V, E+, E−) be a signed hypergraph.765

Given an order ≺ on V , the signed hyperorder width show(H,≺) of ≺ wrt H is defined as766

show(H,≺) = maxE′⊆E− how((V, E+ ∪ E′),≺). The signed hyperorder width show(H) of H767

is defined as show(H) = min≺ show((H,≺). Fractional version of these widths could easily768

be defined but will not be needed in this paper. The following directly follows from the769

definition:770

▶ Theorem 16. For every signed hypergraph H = (V, E+, E−) and elimination order ≺ of771

V :772

If E+ = ∅ then show(H,≺) = β-how(H,≺). In particular, show(H) = β-how(H).773

If E− = ∅ then show(H,≺) = how(H,≺). In particular, show(H) = how(H).774

4.3 Complexity of exhaustive DPLL775

The complexity of DPLL on a conjunctive query Q and order ≺ can be bounded in terms of776

the hyperorder width of H(Q) wrt ≺:777

▶ Theorem 17. Let Q be a signed join query, D a database over domain D and ≺ an778

order on var(Q). Then DPLL(Q, ⟨⟩, D,≺) produces a ≻-ordered {×, dec}-circuit C of size779

O(polyk(|Q|)|D|k+1) such that rel(C) = JQKD and:780

k = fhow(H(Q),≺) if Q is positive,781

k = show(H(Q),≺) if Q otherwise.782

Moreover, the runtime of DPLL(Q, ⟨⟩, D,≺) is at most Õ(polyk(|Q|)|D|k+1).783

This is dedicated to proving Theorem 17. In this section, we fix a signed join query Q784

that has exactly one ⟨⟩-component5, a database D and an order ≺ on var(Q) = {x1, . . . , xn}785

where x1 ≺ · · · ≺ xn. We let D be the domain of D, n be the number of variables of Q and786

m be the number of atoms of Q. To ease notation, we will write X instead of var(Q). For787

i ⩽ n, we denote {x1, . . . , xi} by X⪯i. Similarly, X≺i = X⪯i \ {xi}, X≻i = var(Q) \ X⪯i788

and X⪰i = var(Q) \X≺i. Finally, we let R be the set of (K, σ) such that DPLL(Q, ⟨⟩, D,≺)789

makes at least one recursive call to DPLL(K, σ, D,≺). We start by bounding the size of the790

circuit and the runtime in terms of the number of recursive calls:791

▶ Lemma 18. DPLL(Q, ⟨⟩, D,≺) produces a circuit of size at most O(|R| · |D| · poly(|Q|)) in792

time Õ(|R| · |D| · poly(|Q|)).793

Proof. Given (K, σ) ∈ R, we associate to it every edges created in the circuit by the794

first recursive call with these parameters. There are at most m + 1 such edges for each795

d ∈ D. Indeed, for a value d ∈ D, there are at most m + 1 σ′-connected components for796

σ′ = σ ∪ [x← d] hence the first recursive call creates at most m edges between vd and wi797

and one edge between v and vd. Observe that any other recursive call with these parameters798

will not add any extra edges in the circuit since it will result in a cache hit. Hence, the size799

of the circuit produced in the end is at most |R| · |D| · (m + 1) = O(|R| · |D| · poly(Q)).800

Moreover, each operation in Algorithm 1 can be done in time polynomial in |Q| if one801

stores the relation using the correct datastructure. Indeed, if one sees a relation R on variables802

x1 ≺ · · · ≺ xn as a set of words on an alphabet D whose first letter is xn and last is x1, one803

can store it as a trie of size Õ(|R|) and project R on x1, . . . , xn−1 in Õ(1). Hence, we can804

5 The case where Q has many ⟨⟩-component can be easily dealt with by constructing the Cartesian
product of each ⟨⟩-component of Q.

CVIT 2016

23:22 Direct Access for Conjunctive Queries with Negations

test for inconsistency in time Õ(|Q|) after having fixed the highest variables in Q to a value805

d ∈ D by going over every atom of Q. Moreover computing the σ′-connected component can806

be done in polynomial time in |Q| since it boils down to finding the connected components807

of a graph having at most m nodes. Such a graph can be constructed in polynomial time in808

|Q| by testing intersections of variables in atoms. Finally, from the previous discussion, a809

recursive call to Algorithm 1 creates at most m + 1 edges for each d ∈ D. Moreover, reading810

and writing values in the cache can be done in time Õ(poly(|Q|) by using a hash table. We811

pay the cost of reading the cache in a recursive call directly on Line 12. Hence the time for812

each (K, σ) ∈ R is Õ(|D| · poly(|Q|)), hence a total time of Õ(|R| · |D| · poly(|Q|)). ◀813

It remains to bound the size of R. Lemma 19 characterises the structure of the elements814

of R and Lemma 20 shows connections with with the structure of the hypergraph of Q. We815

need a few notations. Let Q′ ⊆ Q be a subquery of Q and x, y two variables of Q′ such that816

y ≺ x. An x-path to y in Q′ is a list x0, a0, . . . , xp where ai ∈ atoms(Q′) is an atom of Q′ on817

variables xi, xi is a variable of xi, x0 = x, xp = y and xi ⪯ x for every i ⩽ p. Intuitively, it818

maps to a path in the hypergraph of Q′ that starts from x and is only allowed to use vertices819

smaller than x. The x-component of Q′ is the set of atoms a of Q′ such that there exists an820

x-path to a variable y of a in Q′.821

It turns out that the recursive calls performed by DPLL are x-components of some Q′ ⊆ Q822

and x ∈ X where Q′ is obtained from Q by removing negative atoms. Intuitively, these823

removed atoms are the ones that cannot be satisfied anymore by the current assignment of824

variables.825

▶ Lemma 19. Let (K, σ) ∈ R and let x be the biggest variable of K not assigned by σ. There826

exists τ ⊃ σ, a partial assignment of X≻x such that K is the x-component of Q ⇓ τ .827

Proof. The proof is by induction on the order of recursive calls. We start by the first call,828

(Q, ⟨⟩). Since Q has one ⟨⟩-component, the xn-component of Q is Q itself. Moreover, since829

Q ⇓ ⟨⟩ = Q, we have that Q is the xn-component of Q ⇓ ⟨⟩. Now let (K, σ) ∈ R. By830

definition, the recursive call is made during the execution of an other recursive call with831

parameters (K ′, σ′). Assume by induction that for (K ′, σ′), the statement of Lemma 19832

holds. In other words, let x′ be the biggest variable of K ′. Then K ′ is the x′-component833

of Q ⇓ τ ′ for some partial assignment τ ′ ⊃ σ′ of X≻x′ . Moreover, by definition of DPLL,834

σ = σ′′|var(K) where σ′′ = σ ∪ [x′ ← d] for some d ∈ D and K is a σ′′-component of K ′ ⇓ σ′′.835

We claim that K is the x-component of Q ⇓ τ , where τ = τ ′ ∪ [x′ ← d]. First observe836

that every atom a of K are in Q ⇓ τ . Indeed, if a is positive, then a is also in Q ⇓ τ by837

definition. Now if a = ¬R(x) is negative, we claim that a is not inconsistent with τ . Indeed,838

by induction, a is in Q ⇓ τ ′, hence it is not inconsistent with τ ′. Now since a is also in839

K and K is a subset of K ′ ⇓ σ′′ and σ′′(x′) = d, we know that a is not inconsistent with840

τ ′ ∪ [x← d] which is τ by definition. Hence a is in Q ⇓ τ841

Now let a be an atom of K. Since x is a variable of K, there is an atom a0 in K that842

contains x. Moreover, K is a σ′′-connected component of K ′ ⇓ σ′′. Hence, by definition, we843

have a path in K from x (starting with atom a0) to some variable y in a that do not use any844

variable assigned by σ′′, which is equivalent to say that it does not use any variable assign by845

σ since σ = σ′′|var(K) by definition. Since x is the biggest variable of K that is not assigned846

σ by definition, the path from a0 to a uses only variables smaller than x. In other words,847

there is an x-path to y in K, that is, every atom a of K are in the x-component of Q ⇓ τ .848

Now let a be an atom that is in the x-component of Q ⇓ τ . We first show that a in K ′.849

First of all, observe that a is in Q ⇓ τ ′ since Q ⇓ τ ⊆ Q ⇓ τ ′. Now, by definition, there is a850

path from x to some variable y of a in Q ⇓ τ that uses only variables smaller than x. Recall851

F. Capelli and O. Irwin 23:23

that a0 is an atom of K containing variable x. Since K ⊆ K ′, a0 is also an atom of K ′.852

Hence there is a path from atom a0 to atom a using only variables smaller than x, hence853

also smaller than x′. In other words, a is in the x′-component of Q ⇓ τ ′, hence in K ′ by854

definition. Now, since a is in Q ⇓ τ , it is also in σ′′ ⇓ K ′. Hence, it is in the σ′′-component855

of σ′′ ⇓ K ′ that contains x, that is, it is in K, which concludes the proof. ◀856

The following lemma establishes a connection between x-components and the structure857

of the underlying hypergraph. In essence, it allows us to bound the number of atoms needed858

to cover X≻x in an x-component using the signed hyperorder width.859

▶ Lemma 20. Let Q be a signed join query on variables X = {x1, . . . , xn}, xi a variable of860

Q and Ki its xi-component. We let H be the hypergraph of Q, H1 = H and Hj+1 = Hj/xj.861

We have Nxi
(Hi) = var(Ki) ∩X⪰xi

.862

Proof. The proof is by induction on i. We start by proving the equality for i = 1. Since there863

are no variable of K1 smaller than x1, it is clear that K1 = {a ∈ atoms(Q) | x1 ∈ var(a)}.864

Hence var(K1) ∩X⪰x1 = V (K1). Moreover, NH(x1) is exactly the set of variables of atoms865

of Q containing x1 since there is on hyperedge in H per atom of Q. Hence V (K1) ∩X⪰x1 =866

NH(x1) = NH1(v1), the last equality following by definition: H1 = H.867

Now assume that the equality has been established up to xi−1. We start by proving that868

V (Ki) ∩X⪰xi
⊆ NHi

(xi). Let w ∈ V (Ki) ∩X⪰xi
. Either w ∈ NH(xi) and then it is clear869

that w ∈ NHi
(xi). Otherwise, there is, by definition, a xi-path from xi to an atom a of Ki870

containing w of length greater than 1. Let xj be the biggest node on this path that is not871

neither xi nor w. By definition of a xi-path, j < i. Moreover, the first part of this path from872

xi to xj is an xj-path and similarly, the second part from xj to w is a xj-path. By induction,873

we thus have w ∈ NHj
(xj) and xj ∈ NHj

(xj). Hence w and xi are neighbours in Hj+1 since874

the edge NHj (xj) \ {xj} has been added in Hj+1. In particular, it means that w and xi are875

neighbours in Hi since i ⩾ j + 1, hence w ∈ NHi
(xi).876

Now let w ∈ NHi(vi). By definition, w ∈ X⪰xi since x1, . . . , xi−1 have been removed in877

Hi. It remains to prove that w is in an atom a such that there is xi-path to a. If xi and w878

are neighbours in H then it means they appears together in an atom of Q and it is clear879

that w ∈ var(Ki). Otherwise, let j be the smallest value for which w ∈ NHj
(xi) which exists880

since w ∈ NHi
(xi) and j > 1 since xi and w are not neighbours in H = H1. The minimality881

of j implies that xi and w are not neighbours in Hj−1. Since the only edge added in Hj is882

NHj−1(xj−1) \ {xj−1}, it means that both xi and w are neighbours of xj−1 in Hj−1, that is,883

xi ∈ NHj−1(xj−1) and w ∈ NHj−1(xj−1). By induction, both xi and w are variables of Kj−1.884

In other words, there exists a xj−1-path to an atom a containing xi and an xj−1-path to an885

atom a′ containing w w. By composing both paths, it gives a xj−1-path – which is itself a886

xi-path – from xi to w. Hence w ∈ var(Ki). ◀887

We are now ready to prove the upperbound on |R| depending on the width of ≺.888

▶ Lemma 21. Let m be the number of atoms of Q and n the number of variables. We have:889

if Q is a positive join query, |R| ⩽ n|D|k where k = fhow(H(Q),≺).890

otherwise |R| ⩽ nmk+1|D|k where k = show(H(Q),≺).891

Proof. We start with the case where Q is a positive join query. Let (K, σ) ∈ R. In this case,892

we know by Lemma 19 that K is the xi-component of Q ⇓ τ for some τ ⊃ σ. Now, since893

Q does not have negative atoms, Q = Q ⇓ τ since Q ⇓ τ is obtained from Q by removing894

negative atoms only. In other words, K is the xi-component of Q and σ assigns the variables895

of K that are greater than xi. We also know that σ is not inconsistent with the atoms of896

CVIT 2016

23:24 Direct Access for Conjunctive Queries with Negations

Q, otherwise, DPLL would return ⊥. Hence, σ satisfies every atom of K when projected on897

X≻xi
. By Lemma 20, var(K)∩X≻xi

= Nxi
(Hi) where Hi is defined as in Lemma 20. Hence,898

by definition, there exits a fractional cover of NHi
(xi) using the atoms of Q with value at899

most k = fhow(H(Q),≺). Hence, σ can be seen as the projection on var(K) ∩X≻xi of an900

answer of the join of the atoms involved in the fractional cover. By Theorem 2, this join901

query as at most |D|k answers. Hence, there are at most n|D|k possible elements in R: there902

are at most n xi-component (one for each i ⩽ n), and at most |db|k associated σ.903

Now, the case of signed query is a bit more complicated. Again, for (K, σ) ∈ R, we904

know that K is the xi-component of Q ⇓ τ for some τ ⊃ σ and, as before, τ is compatible905

with every positive atom in Q ⇓ τ . Moreoever, if ¬R(x) is an atom of Q ⇓ τ , then τ is906

compatible with R(x), since otherwise ¬R(x) would not be in Q ⇓ τ . Now, let H ′ be the907

hypergraph of Q ⇓ τ . By definition, it is a subhypergraph of H(Q), where only negative908

edges have been removed. Hence, by Lemma 20, var(K) ∩X≻xi
= NH′

i
(xi) is covered by at909

most k = sfhow(H ′) edges. Hence, σ, which corresponds to τ restricted to var(K) ∩X≻xi ,910

can be seen as the projection of an answer of a positive join query having at most k atoms.911

Indeed, even if an edge used to cover var(K) ∩X≻xi
is associated to a negative atom, we912

know that τ is compatible with the positive part of this atom. Hence, (K, σ) can be obtained913

as follows: pick at most k atoms of Q, join their positive parts and take τ a solution of this914

join projected of X≻x. Now K is the x-component of Q ⇓ τ and σ = τ |var(K). Hence, there915

are at most n choice of variable, mk+1 choice of subset of atoms of size at most k and each916

join has at most |D|k answers, which amounts to nmk+1|D|k possible (K, σ) ∈ R, hence917

|R| ⩽ nmk+1|D|k. ◀918

Now Theorem 17 is a direct corollary of Lemmas 18 and 21. If Q is not ⟨⟩-connected, then919

the first recursive call of DPLL will simply break Q into at most O(m) connected component920

and recursively called itself on each now ⟨⟩-components of Q.921

One may wonder why we do not use fractional width when Q contains negative atoms.922

The proof of Lemma 21 breaks in this case when we try to bound the number, for a given x,923

of x-component K that can appear in recursive calls. In the proof of Lemma 21, we bound it924

by taking at subset of at most k atoms of Q. To do it with fractional cover, one would need925

to consider every combination of atoms of Q having fractional cover at most k which we926

did not manage to bound by a polynomial in Q. We therefore leave this question open for927

future research but observe that it would give a complexity of at most Õ(2m|D|k+1) which is928

polynomial wrt data complexity.929

Another improvement that could be made in Theorem 17 is to have a dependency of930

|D|k instead of |D|k+1. The extra |D| comes from the for-loop on Line 6 that explores every931

element of the domain. One could improve the complexity here by exploring only the values932

d ∈ D such that setting x to d does not make Q inconsistent. One could use the Leapfrog933

join proposed in the Leapfrog Triejoin algorithm [34, Section 3.1 and 3.2] to explore these934

candidates and we believe it would shave the extra |D| factor. However, the complexity935

analysis is already complicated enough and we decided to leave this for future investigation.936

5 Tractability results for queries937

In this section, we connect the tractability result on direct access on ordered circuit of938

Section 3 with the algorithm presented in Section 4 to obtain tractability results concerning939

the complexity of direct access on signed join queries. We compare this results with previous940

work.941

F. Capelli and O. Irwin 23:25

Incidence tree-width

Incidence clique-width

Incidence MIM-width

𝛽-hypertree width𝛽-fractional
hyperorder width

Primal tree-width

𝛽-acyclicity

nest-set width

𝛽-hyperorder width

𝛼-acyclicity

fhtw = fhow

Complexity of
#SAT open#SAT Tractable

Tractable Data
Complexity for

Direct Access on NJQ
Precomputation

𝑂(2𝑚poly𝑘(𝑚, 𝑛)|D|
𝑘+1)

Access
𝑂(𝑛 ⋅ polylog(|𝐷|))

Tractable Combined
Complexity for

Direct Access on NJQ
Precomputation

𝑂(poly𝑘(𝑚, 𝑛)|D|
𝑘+1)

Access
𝑂(𝑛 ⋅ polylog(|𝐷|))

Tractable Combined
Complexity for

Direct Access on PJQ
Precomputation

𝑂(poly𝑘(𝑚, 𝑛)|D|
𝑘+1)

Access
𝑂(𝑛 ⋅ polylog(|𝐷|))

Figure 5 Landscape of hypergraph measures and known inclusions with tractability results for
direct access on negative join queries (NJQ), direct access on positive join queries (PJQ) shown
and #SAT on CNF formulas. Here n is the number of variables, m the number of atoms, D the
database, D the domain and k the width measure (k = 1 for α- and β-acyclicity). In the case of
CNF formulas, m stands for the number of clauses, the size of the database is at most m and the
domain is {0, 1}. An arrow between two classes indicates inclusion.

▶ Theorem 22. Given a signed join query Q, an order ≺ on var(Q) and a database942

D on domain D, we can solve the direct access problem for ≺lex with precomputation943

Õ(|D|k+1polyk(|Q|)) and access time O(poly(n) · polylog(|D|)) where n = |var(Q)| and:944

if Q does not contain any negative atom, then k = fhtw(H(Q),≻),945

Otherwise k = show(H(Q),≻).946

Proof. It is a corollary of Theorems 7 and 17. Given Q and D, we call DPLL(Q, ⟨⟩, D,≻) to947

construct a ≺-ordered circuit C on domain D and variables X = var(Q), computing JQKD.948

The circuit is of size O(|D|k+1polyk(|Q|)) and is computed in time Õ(|D|k+1polyk(|Q|))949

with k as given in the statement. Now, we execute the precomputation step described in950

Section 3.2 in time O(|C|poly(n) ·polylog(|D|)) = Õ(|D|k+1polyk(|Q|)) to get a count-labelled951

circuit C computing JQKD. This terminates the precomputation part which has indeed the952

desired complexity.953

Now, to find the ith solution in JQKD, we simply find the ith solution of rel(C) using the954

algorithm of Section 3.2. By Theorem 7, the access time is hence O(poly(n) · polylog(|D|)) =955

O(poly(n) · polylog(|D|)). ◀956

Figure 5 summarizes our contributions for join queries with negations and summarizes957

how our contribution is located in the landscape of known tractability results. Even if our958

result applies to signed conjunctive query, we summarize our contribution only for negative959

join queries and positive join queries since it allows to compare hypergraph measures (where960

tractability of signed queries is stated using signed hypergraphs parameters). The two961

left-most columns of the figure are contributions of this paper (Theorem 22), the right-most962

column is known from [8] but can be recovered in our framework (see discussion below). The963

third and fourth column states the complexity of #SAT and is discussed below. A complete964

presentation of the results stated in this figure can be found in [10, Chapter 2].965

CVIT 2016

23:26 Direct Access for Conjunctive Queries with Negations

Negative join queries and #SAT. Theorem 22 generalises many tractability results from966

the literature. First of all, our result can directly be applied to #SAT, the problem of967

counting the number of satisfying assignment of a CNF formula. A CNF formula F with968

m clauses can directly be transformed into a negative join query QF with m atoms having969

the same hypergraph and into a database DF on domain {0, 1} and of size at most m such970

that JQF KDF is the set of satisfying assignments of F . Indeed, a clause can be seen as the971

negation of a relation having exactly one tuple. For example, x ∨ y ∨ ¬z can be seen as972

¬R(x, y, z) where R contains the tuple (0, 0, 1). Hence, Theorem 22 generalizes both [11]973

and [7] by providing a compilation algorithm for β-acyclic queries to any domain size and to974

the more general measure of β-hyperorder width. It also shows that not only counting is975

tractable but also the more general direct access problem.976

Theorem 22 also generalises the results of [25] which shows the tractability of the evaluation977

of negative join queries with bounded nest set width. Since a negative join query with nest978

set width k has β-hyperorder width at most k by Theorem 12, Theorem 22 implies that979

direct access is tractable for the class of queries with bounded nest set width. In particular,980

counting the number of answers is tractable for this class, a question left open in [25].981

Direct access for positive conjunctive queries. Theorem 22 allows to recover the tractability982

of direct access for positive join queries with bounded fractional hypertree width proven983

in [12, 8]. Indeed, given an order ≺ on the vertices of a hypergraph, [8] introduces the notion984

of incompatibility number of ≺ which corresponds exactly to its fractional hyperorder width.985

Hence Theorem 22 implies the same tractability results for positive join query as [8, Theorem986

10]. The complexity bounds from this paper are however better than ours and proven optimal987

since the preprocessing is of the form polyk(Q)|D|k where we have polyk(Q)|D|k+1. We988

nevertheless believe that with a more careful analysis of the implementation of Algorithm 1,989

we could match this upper bound although this is not the focus of this paper. Another strong990

point of [12] (and also [9, Theorem 39] which is the arXiv version of [8]) is that it handles991

conjunctive queries, that is, join queries with projection which is not covered by Theorem 22.992

We demonstrate the versatility of the circuit-based approach by showing how one can also993

handle quantifiers directly on the circuit.994

▶ Theorem 23. Let C be a ≺-order circuit on domain D, variables X = {x1, . . . , xn} such995

that x1 ≺ · · · ≺ xn and j ⩽ n. One can compute in time O(|C| · poly(n) · polylog(|D|)) a996

circuit C ′ of size at most |C| such that rel(C ′) = rel(C)|{x1,...,xj}.997

Proof. Let v be a decision gate on variable xk with k > j. By definition, every decision-gate998

in the circuit rooted at v tests a variable y ∈ {xk+1, . . . , xn}. Hence rel(v) ⊆ DY with Y ⊆999

{xk, . . . , xn}. Moreover, by computing a count label of C in time O(|C| ·poly(n) ·polylog(|D|))1000

as in Lemma 8, we can decide whether rel(v) is the empty relation in time O(1) by simply1001

checking whether nrelC(v, d0) ̸= 0 where d0 is the largest element of D. We construct C ′ by1002

replacing every decision-gate v on a variable xk with k > j by a constant gate ⊤ if rel(v) ̸= ∅1003

and ⊥ otherwise. We clearly have that |C ′| ⩽ |C| and from what precedes, we can compute1004

C ′ in O(|C| · poly(n) · polylog(|D|)). Moreover, it is straightforward to show by induction1005

that every gate v′ of C ′ which corresponds to a gate v of C computes rel(C)|{x1,...,xj}, which1006

concludes the proof. ◀1007

Now we can use Theorem 23 to handle conjunctive querie by first using Theorem 17 on1008

the underlying join query to obtain a ≺-circuit and then by projecting the variables directly1009

in the circuit. This approach works only when the largest variables in the circuits are the1010

quantified variables. It motivates the following definition: given a hypergraph H = (V, E),1011

F. Capelli and O. Irwin 23:27

an elimination order (v1, . . . , vn) of V is S-connex if and only if there exists i such that1012

{vi, . . . , vn} = S. In other words, the elimination order starts by eliminating V \ S and then1013

proceeds to S. Given a conjunctive query Q and an elimination order ≺ on var(Q), we say1014

that the elimination is free-connex if it is a free(Q)-connex elimination order of H(Q) where1015

free(Q) are the free variables of Q6. We directly have the following:1016

▶ Theorem 24. Given a conjunctive query Q(Y), a free-connex order ≻ on var(Q) and a1017

database D on domain D, we can solve the direct access problem for ≺lex with precomputation1018

Õ(|D|k+1polyk(|Q|)) and access time O(n · polylog(|D|)) where n = |var(Q)| and:1019

if Q does not contain any negative atom, then k = fhtw(H(Q),≻),1020

Otherwise k = show(H(Q),≻).1021

Proof. By running DPLL(Q, ⟨⟩, D,≻), one obtains a ≺-ordered circuit computing JQKD.1022

The size of the circuit is O(|D|k+1polyk(|Q|)) by Theorem 17. Now, ≻ is free-connex, that1023

is, ≻ is of the form z1 ≻ · · · ≻ zn and there exists i such that {zi, . . . , zn} = free(Q).1024

Hence, with respect to the relation ≺, we have that var(Q) \ free(Q) are maximal. Hence by1025

Theorem 23, we can construct a ≺-circuit of size at most O(|D|k+1polyk(|Q|)) computing1026

JQKD|Y = JQ(Y)KD, which conclude the proof using Theorem 7. ◀1027

We observe that our notion of free-connex elimination order for Q is akind to [9, Definition1028

38] with two differences: first, in [9], it is allowed to only specify a preorder on free(Q) and1029

the complexity of the algorithm is then stated with the best possible compatible ordering,1030

which would be possible in our framework too. The second difference is that the order are1031

presented in reverse, that is, in their definition, the order starts with free variables and1032

ends with quantified variables. We decided to present free-connexity of elimination orders1033

this way to make this notion corresponds to the existing notion of free-connexity using tree1034

decomposition. Now, Theorem 24 constructs a direct access for ≺lex when ≻ is free-connex,1035

so Theorem 24 proves the same tractability result as [9, Theorem 39], again with an extra1036

|D| factor but compatible with negative and signed conjunctive queries.1037

6 Conclusion and Future Work1038

In this paper, we have proven new tractability results concerning the direct access of the1039

answers of signed conjunctive queries. In particular, we have introduce a framework unifying1040

the positive and the signed case using factorised representation of the answer sets of the query.1041

This opens many new avenue of research. First of all, contrary to the positive query case, we1042

do not yet have lower bounds parameterised by β-hyperorder width on the preprocessing and1043

access time needed for solving direct access tasks. Having a better understanding of what1044

happens on fractional relaxation of β-hyperorder width would be a first step toward proving1045

such lower bounds. Another question remains concerning the complexity of the DPLL-style1046

algorithm. We strongly believe that with the right data structures, the complexity of DPLL1047

on queries having fractional hypertree width k should be of the order |D|k instead of the1048

|D|k+1, which would allow us to match the existing upper bounds exactly. We leave a more1049

involved analysis of this algorithm for future work.1050

Finally, we belive that the circuit representation that we are using is promising for1051

answering different kind of aggregation tasks and hence generalising existing results to1052

6 The notion of S-connexity already exists for tree decompositions. We use the same name here as the
existence of an S-connex tree decomposition of (fractional) hypertree width k is equivalent to the
existence of an S-connex elimination order of (fractional) hyperorder width k.

CVIT 2016

23:28 Direct Access for Conjunctive Queries with Negations

the case of signed conjunctive queries. For example, we believe that FAQ and AJAR1053

queries [24, 21] could be solved using this data structure. Indeed, it looks possible to1054

annotate the circuit with semi-ring elements and to project them out in a similar fashion as1055

Theorem 23. Similarly, we believe that the framework of [15] for solving direct access tasks1056

on conjunctive queries with aggregation operators may be generalised in a similar way to the1057

class of ordered {×, dec}-circuits.1058

F. Capelli and O. Irwin 23:29

References1059

1 Guillaume Bagan. Algorithmes et complexité des problèmes d’énumération pour l’évaluation1060

de requêtes logiques. (Algorithms and complexity of enumeration problems for the evaluation1061

of logical queries). PhD thesis, University of Caen Normandy, France, 2009.1062

2 Guillaume Bagan, Arnaud Durand, Etienne Grandjean, and Frédéric Olive. Computing the jth1063

solution of a first-order query. RAIRO-Theoretical Informatics and Applications, 42(1):147–164,1064

2008.1065

3 Nurzhan Bakibayev, Tomáš Kočiskỳ, Dan Olteanu, and Jakub Závodnỳ. Aggregation and1066

ordering in factorised databases. Proceedings of the VLDB Endowment, 6(14):1990–2001, 2013.1067

4 Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.1068

In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC1069

’93, pages 226–234. ACM, 1993.1070

5 Johann Brault-Baron. De la pertinence de l’énumération: complexité en logiques proposition-1071

nelle et du premier ordre. PhD thesis, Université de Caen, 2013.1072

6 Johann Brault-Baron. Hypergraph acyclicity revisited. ACM Computing Surveys (CSUR),1073

49(3):1–26, 2016.1074

7 Johann Brault-Baron, Florent Capelli, and Stefan Mengel. Understanding model counting1075

for beta-acyclic CNF-formulas. In 32nd International Symposium on Theoretical Aspects of1076

Computer Science, volume 30 of LIPIcs, pages 143–156. Schloss Dagstuhl, 2015.1077

8 Karl Bringmann, Nofar Carmeli, and Stefan Mengel. Tight fine-grained bounds for direct1078

access on join queries. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium1079

on Principles of Database Systems, pages 427–436, 2022.1080

9 Karl Bringmann, Nofar Carmeli, and Stefan Mengel. Tight fine-grained bounds for direct1081

access on join queries. arXiv preprint arXiv:2201.02401, 2022.1082

10 Florent Capelli. Structural restrictions of CNF-formulas: applications to model counting and1083

knowledge compilation. PhD thesis, Université Paris Diderot, Sorbonne Paris Cité, 2016. URL:1084

https://florent.capelli.me/publi/these_capelli.pdf.1085

11 Florent Capelli. Understanding the complexity of #SAT using knowledge compilation. In1086

32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,1087

Iceland, June 20-23, 2017, pages 1–10. IEEE Computer Society, 2017. doi:10.1109/LICS.1088

2017.8005121.1089

12 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Rie-1090

dewald. Tractable orders for direct access to ranked answers of conjunctive queries. ACM1091

Transactions on Database Systems, January 2023. doi:10.1145/3578517.1092

13 Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Benny Kimelfeld, and Nicole Schweikardt.1093

Answering (unions of) conjunctive queries using random access and random-order enumeration.1094

In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of1095

Database Systems, pages 393–409, 2020.1096

14 Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in1097

relational data bases. In Proceedings of the Ninth Annual ACM Symposium on Theory of1098

Computing, STOC ’77, pages 77–90, New York, NY, USA, 1977. ACM. doi:10.1145/800105.1099

803397.1100

15 Idan Eldar, Nofar Carmeli, and Benny Kimelfeld. Direct access for answers to conjunctive1101

queries with aggregation. arXiv preprint arXiv:2303.05327, 2023.1102

16 Johannes K Fichte, Markus Hecher, Neha Lodha, and Stefan Szeider. An smt approach1103

to fractional hypertree width. In Principles and Practice of Constraint Programming: 24th1104

International Conference, CP 2018, Lille, France, August 27-31, 2018, Proceedings 24, pages1105

109–127. Springer, 2018.1106

17 Robert Ganian, André Schidler, Manuel Sorge, and Stefan Szeider. Threshold treewidth and1107

hypertree width. Journal of Artificial Intelligence Research, 74:1687–1713, 2022.1108

18 Georg Gottlob and Reinhard Pichler. Hypergraphs in model checking: Acyclicity and hypertree-1109

width versus clique-width. SIAM Journal on Computing, 33(2):351–378, 2004.1110

CVIT 2016

https://florent.capelli.me/publi/these_capelli.pdf
https://doi.org/10.1109/LICS.2017.8005121
https://doi.org/10.1109/LICS.2017.8005121
https://doi.org/10.1109/LICS.2017.8005121
https://doi.org/10.1145/3578517
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/800105.803397

23:30 Direct Access for Conjunctive Queries with Negations

19 Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. ACM Transac-1111

tions on Algorithms (TALG), 11(1):4, 2014.1112

20 Jinbo Huang and Adnan Darwiche. DPLL with a Trace: From SAT to Knowledge Compilation.1113

In Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence,1114

pages 156–162, 2005.1115

21 Manas R Joglekar, Rohan Puttagunta, and Christopher Ré. Ajar: Aggregations and joins over1116

annotated relations. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium1117

on Principles of Database Systems, pages 91–106, 2016.1118

22 Jens Keppeler. Answering Conjunctive Queries and FO+ MOD Queries under Updates. PhD1119

thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2020.1120

23 Mahmoud Abo Khamis, Hung Q Ngo, and Atri Rudra. Faq: questions asked frequently. arXiv1121

preprint arXiv:1504.04044, 2015.1122

24 Mahmoud Abo Khamis, Hung Q Ngo, and Atri Rudra. Faq: questions asked frequently. In1123

Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database1124

Systems, pages 13–28, 2016.1125

25 Matthias Lanzinger. Tractability beyond β-acyclicity for conjunctive queries with negation1126

and sat. Theoretical Computer Science, 942:276–296, 2023.1127

26 Dan Olteanu. Factorized databases: A knowledge compilation perspective. In AAAI Workshop:1128

Beyond NP, 2016.1129

27 Dan Olteanu and Jakub Závodnỳ. Factorised representations of query results: size bounds and1130

readability. In Proceedings of the 15th International Conference on Database Theory, pages1131

285–298. ACM, 2012.1132

28 Dan Olteanu and Jakub Závodnỳ. Size bounds for factorised representations of query results.1133

ACM Transactions on Database Systems (TODS), 40(1):1–44, 2015.1134

29 Dan Olteanu and Jakub Závodný. Size Bounds for Factorised Representations of Query Results.1135

ACM Transactions on Database Systems, 40(1):1–44, March 2015.1136

30 S. Ordyniak, D. Paulusma, and S. Szeider. Satisfiability of acyclic and almost acyclic CNF1137

formulas. Theoretical Computer Science, 481:85–99, 2013.1138

31 Reinhard Pichler and Sebastian Skritek. Tractable counting of the answers to conjunctive1139

queries. Journal of Computer and System Sciences, 79:984–1001, September 2013.1140

32 Tian Sang, Fahiem Bacchus, Paul Beame, Henry A Kautz, and Toniann Pitassi. Combining1141

component caching and clause learning for effective model counting. Theory and Applications1142

of Satisfiability Testing, 4:7th, 2004.1143

33 Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. Learning linear regression models over1144

factorized joins. In Proceedings of the 2016 International Conference on Management of Data,1145

pages 3–18. ACM, 2016.1146

34 Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In Nicole1147

Schweikardt, Vassilis Christophides, and Vincent Leroy, editors, Proc. 17th International1148

Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014, pages 96–106.1149

OpenProceedings.org, 2014. doi:10.5441/002/icdt.2014.13.1150

35 Mihalis Yannakakis. Algorithms for acyclic database schemes. In Proceedings of the Seventh1151

International Conference on Very Large Data Bases - Volume 7, VLDB ’81, pages 82–94.1152

VLDB Endowment, 1981.1153

https://doi.org/10.5441/002/icdt.2014.13

	1 Introduction
	2 Preliminaries
	3 Ordered relational circuits
	3.1 Definitions
	3.2 Direct Access for s

	4 From join queries to s
	4.1 Exhaustive DPLL for signed join queries
	4.2 Hyperorder width
	4.3 Complexity of exhaustive DPLL

	5 Tractability results for queries
	6 Conclusion and Future Work

