Direct Access for Conjunctive Queries with Negations

Florent Capelli \square (ㅁ)
Univ. Artois, CNRS, UMR 8188, Centre de Recherche en Informatique de Lens (CRIL), F-62300
Lens, France
Oliver Irwin \square (0)
Université de Lille, CNRS, Inria, UMR 9189 - CRIStAL, F-59000 Lille, France

Abstract

Given a conjunctive query Q and a database \mathbf{D}, a direct access to the answers of Q over \mathbf{D} is the operation of returning, given an index j, the $j^{\text {th }}$ answer for some order on its answers. While this problem is \#P-hard in general with respect to combined complexity, many conjunctive queries have an underlying structure that allows for a direct access to their answers for some lexicographical ordering that takes polylogarithmic time in the size of the database after a polynomial time precomputation. Previous work has precisely characterised the tractable classes and given fine-grained lower bounds on the precomputation time needed depending on the structure of the query. In this paper, we generalise these tractability results to the case of signed conjunctive queries, that is, conjunctive queries that may contain negative atoms. Our technique is based on a class of circuits that can represent relational data. We first show that this class supports tractable direct access after a polynomial time preprocessing. We then give bounds on the size of the circuit needed to represent the answer set of signed conjunctive queries depending on their structure. Both results combined together allow us to prove the tractability of direct access for a large class of conjunctive queries. On the one hand, we recover the known tractable classes from the literature in the case of positive conjunctive queries. On the other hand, we generalise and unify known tractability results about negative conjunctive queries - that is, queries having only negated atoms. In particular, we show that the class of β-acyclic negative conjunctive queries and the class of bounded nest set width negative conjunctive queries admit tractable direct access.

2012 ACM Subject Classification Information systems \rightarrow Relational database model
Keywords and phrases Conjunctive queries, factorised databases, direct access, hypertree decomposition

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23
Funding This work was supported by project ANR KCODA, ANR-20-CE48-0004.
Acknowledgements I want to thank...

1 Introduction

The direct access task, given a database query Q and a database \mathbf{D}, is the problem of outputing on input k, the k-th answer of Q over \mathbf{D} or an error when k is greater than the number of answers of Q, where some order on $\llbracket Q \rrbracket^{\mathbf{D}}$, the answers of Q over \mathbf{D}, is assumed. This task has been introduced by Bagan, Durand, Grandjean and Olive in [2] and is very natural in the context of databases. It can be used as a building block for many other interesting tasks such as counting, enumerating [2] or sampling without repetition [13, 22] the answers of Q. Of course, if one has access to an ordered array containing $\llbracket Q \rrbracket^{\mathbf{D}}$, answering direct access tasks simply consists in reading the right entry of the array. However, building such an array is often expensive, especially when the number of answers of Q is large. Hence, a natural approach for solving this problem is to simulate this method by using a data structure to represent $\llbracket Q \rrbracket^{\mathbf{D}}$ that still allows for efficient direct access tasks to be solved but

© Florent Capelli and Oliver Irwin;
licensed under Creative Commons License CC-BY 4.0
42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1-23:30
Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
that is cheaper to compute than the complete answer set. This approach is thus separated in two phases: a preprocessing phase where the datastructure is constructed followed by a phase where direct access tasks are solved. To measure the quality of an algorithm for solving direct access tasks, we hence separate the preprocessing time - that is the time needed for the preprocessing phase - and the access time, that is, the time needed to answer one direct access query after the preprocessing. For example, the approach consisting in building an indexed array for $\llbracket Q \rrbracket^{\mathrm{D}}$ has a preprocessing time in at least the size of $\llbracket Q \rrbracket^{\mathbf{D}}$ (and much higher in practice) and constant access time. While the access time is optimal in this case, the cost of preprocessing is often too high to pay in practice.

Previous work has consequently focused on devising methods with better preprocessing time while offering reasonable access time. In their seminal work [2], Bagan, Durand, Grandjean and Olive give an algorithm for solving direct access tasks with linear precomputation time and constant access time on a class of first order logic formulas and bounded degree databases. Bagan [1] later studied the problem for monadic second order formulas over bounded treewidth databases. Another line of research has been to study classes of conjunctive queries that support efficient direct access. In [13], Carmeli, Zeevi, Berkholz, Kimelfeld, and Schweikardt prove that direct access tasks can be solved on acyclic conjunctive queries with linear preprocessing time and polylogarithmic access time for a well-chosen lexicographical order. The results are also generalised to the case of bounded fractional hypertree width queries, a number measuring how far a conjunctive query is from being acyclic. It generalises many results from the seminal paper by Yannakakis establishing the tractability of model checking on acyclic conjunctive queries [35] to the tractability of counting the number of answers of conjunctive queries [31] having bounded hypertree width. This result was later improved by precisely characterising the lexicographical ordering allowing for this kind of complexity guarantees. Fine-grained characterisation of the complexity of answering direct access tasks on conjunctive queries, whose answers are assumed to be ordered using some lexographical order, has been given by Carmeli, Tziavelis, Gatterbauer, Kimelfeld and Riedewald in [12] for the special case of acyclic queries and by Bringmann, Carmeli and Mengel in [8] for the general case. More recently, Eldar, Carmeli and Kimelfeld [15] studied the complexity of solving direct access tasks for conjunctive queries with aggregation.

In this paper, we devise new methods for solving direct access tasks on the answer set of signed conjunctive queries, that is, conjunctive queries that may contain negated atoms. This is particularly challenging because only a few tractability results are known on signed conjunctive queries. The model checking problem for signed conjunctive queries being NP-hard on acyclic conjunctive queries with respect to combined complexity, it is not possible to directly build on the work cited in the last paragraph. Two classes of negative conjunctive queries (that is, conjunctive queries where every atom is negated) have been shown so far to support efficient model checking: the class of β-acyclic queries $[30,5]$ and the class of bounded nested-set width queries [25]. The former has been shown to also support efficient (weighted) counting [7, 11]. Our main contribution is a generalisation of these results to direct access tasks. More precisely, we give an algorithm that efficiently solves direct access tasks on a large class of signed conjunctive queries, which contains in particular β-acyclic negative conjunctive queries, bounded nest-width negative conjunctive queries and bounded fractional hypertree width positive conjunctive query. For the latter case, the complexity we obtain is similar to the one presented in [8] and we also get complexity guarantees depending on a lexicographical ordering that can be specified by the user. Hence our result both improves the understanding of the tractability of signed conjunctive queries and unify the existing results with the positive case. In a nutshell, we prove that the complexity of solving direct
access tasks for a lexicographical order of a signed conjunctive query Q roughly matches the complexity proven in [8] for the worst positive query we could construct by removing some negative atoms of Q and turning the others to positive atoms. It is not surprising since one could simulate such a query by choosing a database where some negated atoms are associated with empty relations and therefore making them virtually useless in the query. However, this result is not trivial to obtain and necessitates the introduction of new tools to handle negated atoms.

As a byproduct, we introduce a new notion of hypergraph width based on elimination order, the β-hyperorder width, that is hereditary - in the sense that the width of every subhypergraph does not exceed the width of the original hypergraph - which makes it particularly well tailored for the study of the tractability of negative conjunctive queries. We show that this notion sits between nest-set width and β-hypertree width [18], but does not suffer from the main drawback of working with β-hypertree width: our width notion is based on a decomposition that works for every subhypergraph.

Our method is based on a two-step preprocessing. Given a signed conjunctive query Q, a database \mathbf{D} and an order \prec on its variables, we start by constructing a circuit which represents $\llbracket Q \rrbracket^{\mathrm{D}}$ in a factorised way, enjoying interesting syntactical properties. The size of this circuit depends on the complexity of the order \prec chosen on the variables of Q. We then show that with a second light preprocessing on the circuit itself, we can answer direct access tasks on the circuit in time poly (n) polylog (D) where n is the number of variables of Q and D is the domain of \mathbf{D}. This approach is akin to the approach used in factorised databases, introduced by Olteanu and Závodný [27], a fruitful approach allowing efficient management of the answer sets of a query by working directly on a factorised representation of the answer set instead of working on the query itself $[26,33,3,28]$. However, the restrictions that we are considering in this paper are different from the ones used in previous work since we need to somehow account for the variable ordering in the circuit itself. The syntactic restrictions we use have already been considered in [11] where they are useful to deal with β-acyclic CNF formulas.

Organisation of the paper. The paper is organised as follows: Section 2 introduces the notations and concepts necessary to understand the paper. We then present the family of circuits we use to represent database relations and the direct access algorithm in Section 3. Section 4 presents the algorithm used to construct a circuit representing $\llbracket Q \rrbracket^{\mathrm{D}}$ from a join query Q (that is a conjunctive query without existential quantifiers) and a database \mathbf{D}. Upper bounds on the size of the circuits produced are given in Section 4.3 using hypergraph decompositions defined in Section 4.2. Finally Section 5 explicitly states the results we obtain by combining both techniques together, explain how one can go from join query to conjunctive query by existentially projecting variables directly in the circuit and makes connections with the existing literature.

2 Preliminaries

General mathematical notations. Given $n \in \mathbb{N}$, we denote by $[n]$ the set $\{0, \ldots, n\}$. When writing down complexity, we use the notation $\operatorname{poly}(n)$ to denote that the complexity is polynomial in $n, \operatorname{poly}_{k}(n)$ to denote that the complexity is polynomial in n when k is considered a constant (in other words, the coefficients and the degree of the polynomial may depend on k) and polylog (n) to denote that the complexity is polynomial in $\log (n)$. Moreover, we use the shortcut $\tilde{O}(N)$ to indicate that polylogarithmic factors are ignored, that is, the
complexity is $O(N$ polylog $(N))$.

Tuples and relations. Let D and X be finite sets. A (named) tuple on domain D and variables X is a mapping from X to D. We denote by D^{X} the set of all tuples on domain D and variables X. A relation R on domain D and variables X is a subset of tuples, that is, $R \subseteq D^{X}$. Given an tuple $\tau \in D^{X}$ and $Y \subseteq X$, we denote by $\left.\tau\right|_{Y}$ the tuple on domain D and variable Y such that $\left.\tau\right|_{Y}(y)=\tau(y)$ for every $y \in Y$. Given a variable $x \in X$ and $d \in D$, we denote by $[x \leftarrow d]$ the tuple on variables $\{x\}$ that assigns the value $d \in D$ to x. We denote by $\left\rangle\right.$ the empty tuple, that is, the only element of D^{\emptyset}. Given two tuples $\tau_{1} \in D^{X_{1}}$ and $\tau_{2} \in D^{X_{2}}$, we say that τ_{1} and τ_{2} are compatible, denoted by $\tau_{1} \simeq \tau_{2}$, if $\left.\tau_{1}\right|_{X_{1} \cap X_{2}}=\left.\tau_{2}\right|_{X_{1} \cap X_{2}}$. In this case, we write $\tau_{1} \bowtie \tau_{2}$ the tuple on domain D and variables $X_{1} \cup X_{2}$ defined as

$$
\left(\tau_{1} \bowtie \tau_{2}\right)(x)=\left\{\begin{array}{l}
\tau_{1}(x) \text { if } x \in X_{1} \\
\tau_{2}(x) \text { if } x \in X_{2}
\end{array}\right.
$$

If $X_{1} \cap X_{2}=\emptyset$, we write $\tau_{1} \times \tau_{2}$. The join $R_{1} \bowtie R_{2}$ of R_{1} and R_{2}, for two relations R_{1}, R_{2} on domain D and variables X_{1}, X_{2} respectively, is defined as $\left\{\tau_{1} \bowtie \tau_{2} \mid \tau_{1} \in R_{1}, \tau_{2} \in R_{2}, \tau_{1} \simeq\right.$ $\left.\tau_{2}\right\}$. Observe that if $X_{1} \cap X_{2}=\emptyset, R_{1} \bowtie R_{2}$ is simply the cartesian product of R_{1} and R_{2}. In this case, we denote it by $R_{1} \times R_{2}$. The extended union of R_{1} and R_{2}, denoted by $R_{1} \cup R_{2}$, is the relation on domain D and variables $X_{1} \cup X_{2}$ defined as $\left(R_{1} \times D^{X_{2} \backslash X_{1}}\right) \cup\left(R_{2} \times D^{X_{1} \backslash X_{2}}\right)$. When $X_{1}=X_{2}$, the extended union of R_{1} and R_{2} is simply $R_{1} \cup R_{2}$, that is, the set of tuples over X_{1} that are either in R_{1} or in R_{2}.

Let $R \subseteq D^{X}$ be a relation from a set of variables X to a domain D. We denote $\sigma_{F}(R)$ as the subset of R where the formula F is true. Throughout the paper, we will assume that both the domain D and the variable set X are ordered. The order on D will be denoted as $<$ and the order on X as \prec and we will often write $D=\left\{d_{1}, \ldots, d_{p}\right\}$ with $d_{1}<\cdots<d_{p}$ and $X=\left\{x_{1}, \ldots, x_{n}\right\}$ with $x_{1} \prec \cdots \prec x_{n}$. Given $d \in D$, we denote by rank (d) the number of elements of D that are smaller or equal to d. Both $<$ and \prec induce a lexicographical order $\prec_{\text {lex }}$ on D^{X} defined as $\tau \prec_{\text {lex }} \tau^{\prime}$ if there exists $x \in X$ such that for every $y \prec x, \tau(y)=\tau^{\prime}(y)$ and $\tau(x)<\tau^{\prime}(x)$. Given a integer $k \leqslant \# R$, we denote by $R[k]$ the $k^{\text {th }}$ tuple in R for the $\prec_{\text {lex }}$-order.

We will often use the following observation:

- Lemma 1. Let $\tau=R[k]$ and $x=\min (\operatorname{var}(R))$. Then $\tau(x)=\min \left\{d \mid \# \sigma_{x \leqslant d}(R) \geqslant k\right\}$. Moreover, $\tau=R^{\prime}\left[k^{\prime}\right]$, where $R^{\prime}=\sigma_{x=d}(R)$ is the subset of R where x is equal to d and $k^{\prime}=k-\# \sigma_{x<d}(R)$.
Proof. Let $A=\left\{d \mid \# \sigma_{x \leqslant d}(R) \geqslant k\right\}$.
We start by showing that $\tau(x) \in A$, meaning $\# \sigma_{x \leqslant \tau(x)} \geqslant k$. Let $\alpha \preceq_{\text {lex }} \tau$. Since x is the smallest variable, it follows that $\alpha \in \sigma_{x \leqslant \tau(x)}(R)$ as $\alpha(x) \leqslant \tau(x)$. Since there exists exactly k such assignments α (by definition of τ which is the $k^{\text {th }}$ tuple of R), we have $\# \sigma_{x \leqslant \tau(x)}(R) \geqslant k$.

We now show that, given a value $d^{\prime}<\tau(x), d^{\prime} \notin A$ and as such that $\tau(x)$ is indeed the smallest value in A. Let $\alpha \in \sigma_{x \leqslant d^{\prime}}$. It follows that $\alpha(x) \leqslant \tau(x)$, and therefore that $\alpha<\tau$. We therefore have that $\sigma_{x \leqslant d^{\prime}}(R) \subset\left\{\alpha \mid \alpha \prec_{\operatorname{lex}} \tau\right\}$. By definition of τ as the $k^{\text {th }}$ tuple, the latter set has less than $k-1$ elements. Hence $d^{\prime} \notin A$. This implies that for any $d \in A, \tau(x) \leqslant d$.

This shows that $\tau(x)$ is indeed the smallest value d such that there exists at least k tuples α where $\alpha(x) \leqslant d$.

The second part of the lemma follows from the following observation: when assigning a value d to the variable x, one actually eliminates a certain number of tuples from the initial set. Specifically, the tuples that assign a different value to x.

F. Capelli and O. Irwin

By definition, k is the cardinal of the set $\left\{\tau^{\prime} \mid \tau^{\prime} \preceq_{\operatorname{lex}} \tau\right\}$. This set can be written as the disjoint union of the set of tuples where $\tau^{\prime}(x)<d$ (which are all smaller than τ) and the set of tuples smaller than τ where $\tau^{\prime}(x)=d$. We therefore have $k=\#\{\tau \mid \tau(x)<d\}+\#\left\{\tau^{\prime} \mid\right.$ $\left.\tau^{\prime} \prec_{\text {lex }} \tau, \tau^{\prime}(x)=d\right\}$. By definition, the first set is $\sigma_{x<d}(R)$. The second part of the sum is exactly the index of the tuple in the subset of R where $\tau(x)=d$. We can rewrite the sum as $k=\# \sigma_{x<d}(R)+k^{\prime}$, implying $k^{\prime}=k-\# \sigma_{x<d}(R)$. A visual representation of this index transformation can be found in Figure 1.

Figure 1 Representation of the link between k and k^{\prime}

Queries. A (signed) join query Q is an expression of the form

$$
Q:=R_{1}\left(\mathbf{x}_{\mathbf{1}}\right), \ldots, R_{m}\left(\mathbf{x}_{\ell}\right), \neg S_{\ell+1}\left(\mathbf{x}_{\ell+\mathbf{1}}\right), \ldots, \neg S_{m}\left(\mathbf{x}_{\mathbf{m}}\right)
$$

where each R_{i} and S_{j} are relation symbols and $\mathbf{x}_{\mathbf{i}}$ are tuples of variables in X. In this paper, we consider self-join free queries, that is, we assume that any relation symbol appears at most once in each query. Elements of the form $R_{i}\left(\mathbf{x}_{\mathbf{i}}\right)$ are called positive atoms and elements of the form $S_{j}\left(\mathbf{x}_{\mathbf{j}}\right)$ are called negative atoms. The set of variables of Q is denoted by $\operatorname{var}(Q)$, the set of positive (resp. negative) atoms of Q is denoted by atoms ${ }^{+}(Q)$ (resp. atoms ${ }^{-}(Q)$). A positive join query is a signed join query without negative atoms. A negative join query is a join query without positive atoms. The size $|Q|$ of Q is defined as $\sum_{i=1}^{m}\left|\mathbf{x}_{\mathbf{i}}\right|$, where $|\mathbf{x}|$ denotes the number of variables in \mathbf{x}. A database \mathbf{D} for Q is an ordered finite set D called the domain together with a set of relations $R_{i}^{\mathbf{D}} \subseteq D^{a_{i}}, S_{j}^{\mathbf{D}} \subseteq D^{a_{j}}$ such that $a_{i}=\left|\mathbf{x}_{\mathbf{i}}\right|$. The answers of Q over \mathbf{D} is the relation $\llbracket Q \rrbracket^{\mathbf{D}} \subseteq D^{\operatorname{var}(Q)}$ defined as the set of $\sigma \in D^{X}$ such that for every $i \leqslant m, \sigma\left(\mathbf{x}_{\mathbf{i}}\right) \in R_{i}^{\mathbf{D}}$ and $\sigma\left(\mathbf{x}_{\mathbf{i}}\right) \notin S_{i}^{\mathrm{D}}$. The size $|\mathbf{D}|$ of the database \mathbf{D} is defined to be the total number of tuples in it plus the size of its domain ${ }^{1}$, that is, $|D|+\sum_{i=1}^{\ell}\left|R_{i}^{\mathbf{D}}\right|+\sum_{i=\ell+1}^{m}\left|S_{j}^{\mathbf{D}}\right|$.

A signed conjunctive query $Q(Y)$ is a join query Q together with $Y \subseteq \operatorname{var}(Q)$, called the free variables of Q and denoted by free (Q). The answers $\llbracket Q(Y) \rrbracket^{\mathbf{D}}$ of a conjunctive query Q over a database D are defined as $\left.\llbracket Q \rrbracket^{\mathbf{D}}\right|_{Y}$, that is, they are the projection over Y of answers of Q.

[^0]Direct Access tasks. Given a query Q, a database instance \mathbf{D} on ordered domain D and a total order \prec on the variables of Q, a Direct Access task [12] is the problem of returning, on input k, the k-th tuple $\llbracket Q \rrbracket^{\mathbf{D}}[k]$ for the order $\prec_{\text {lex }}$ if $k<\# \llbracket Q \rrbracket^{\mathbf{D}}$ and fails otherwise. We are interested in answering Direct Access tasks using the same setting as [12]: we allow a precomputation phase during which a data structure is constructed, followed by an access phase. Our goal is to obtain - with a precomputation time that is polynomial in the size of D - a data structure that can be used to answer any access query in polylogarithmic time in the size of \mathbf{D}.

Hypergraphs and Signed Hypergraphs. A hypergraph $H=(V, E)$ is defined as a set of vertices V and hyperedges $E \subseteq 2^{V}$, that is, a hyperedge $e \in E$ is a subset of V. A signed hypergraph $H=\left(V, E_{+}, E_{-}\right)$is defined as a set of vertices V, positive edges $E_{+} \subseteq$ 2^{V} and negative edges $E_{-} \subseteq 2^{V}$. The signed hypergraph $H(Q)=\left(\operatorname{var}(Q), E_{+}, E_{-}\right)$of a signed conjunctive query $Q(Y)$ is defined as the signed hypergraph whose vertex set is the variables of Q and such that $E_{+}=\{\operatorname{var}(a) \mid a$ is a positive atom of $Q\}$ and $E_{-}=\{\operatorname{var}(a) \mid$ a is a negative atom of $Q\}$. We observe that when Q is a positive query, $H(Q)$ corresponds to the usual definition of the hypergraph of a conjunctive query since $E_{-}=\emptyset$.

Let $H=(V, E)$ be a hypergraph. A subhypergraph H^{\prime} of H, denoted by $H^{\prime} \subseteq H$ is a hypergraph of the form $\left(V, E^{\prime}\right)$ with $E^{\prime} \subseteq E$. In other word, a subhypergraph of H is a hypergraph obtained by removing edges in H. For $S \subseteq V$, we denote by $H \backslash S$ the hypergraph $\left(V \backslash S, E^{\prime}\right)$ where $E^{\prime}=\{e \backslash S \mid e \in E\}$. Given $v \in V$, we denote by $E(v)=\{e \in E \mid v \in e\}$ the set of edges containing v, by $N_{H}(v)=\bigcup_{e \in E(v)} e$ the neighborhood of v in H and by $N_{H}^{*}(v)=N_{H}(v) \backslash\{v\}$ the open neighborhood of v. We will be interested in the following vertex removal operation on H : given a vertex v of H, we denote by $H / v=(V \backslash\{v\}, E / v)$ where E / v is defined as $\{e \backslash\{v\} \mid e \in E\} \backslash\{\emptyset\} \cup\left\{N_{H}^{*}(v)\right\}$, that is, H / v is obtained from H by removing v from every edges of H and by adding a new edge that contains the open neighborhood of v.

Given $S \subseteq V$ and $E \subseteq 2^{V}$, a covering of S with E is a subset $F \subseteq E$ such that $S \subseteq \bigcup_{e \in F} e$. The cover number cn (S, E) of S wrt E is defined as the minimal size of a covering of S with E, that is, $\operatorname{cn}(S, E)=\min \{|F| \mid F$ is a covering of S with $E\}$. A fractional covering of S with E is a function $c: E \rightarrow \mathbb{R}_{+}$such that for every $s \in S, \sum_{e \in E(s)} c(e) \geqslant 1$. Observe that a covering is a fractional covering where c has values in $\{0,1\}$. The fractional cover number $f c n(S, E)$ of S wrt E is defined as the minimal size of a fractional covering of S with E, that is, $f c n(S, E)=\min \left\{\sum_{e \in E} c(e) \mid c\right.$ is a fractional covering of S with $\left.E\right\}$. Fractional covers are particularly interesting because of the following theorem by Grohe and Marx:

- Theorem 2 ([19]). Let Q be a join query and λ be the fractional cover number of $\operatorname{var}(Q)$. Then for every database $\mathbf{D}, \llbracket Q \rrbracket^{\mathbf{D}}$ has size at most $|\mathbf{D}|^{\lambda}$.

3 Ordered relational circuits

In this section, we introduce a data structure that can be used to succinctly represent relations. This data structure is an example of factorised representation, such as d-representations [29], but does not need to be structured along a tree, which will allow us to handle more queries, and especially queries with negative atoms - for example β-acyclic signed conjunctive queries, a class of queries that cannot be represented by polynomial size d-representations [11, Theorem 9].

3.1 Definitions

Relational circuits. A $\{\bowtie, \operatorname{dec}\}$-circuit C on variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and domain D is a multi-directed acyclic graph ${ }^{2}$ with one distinguished gate out (C) called the output of C. The circuit is labelled as follows:

- every gate of C with no ingoing edge, called an input of C, is labelled by either 0 or 1 ;
- a gate v labelled by a variable $x \in X$ is called a decision gate. Each ingoing edge e of v is labelled by a value $d \in D$ and for each $d \in D$, there is at most one ingoing edge of v labelled by d. This implies that a decision gate has at most $|D|$ outgoing edges; and - every other gate is labelled by \bowtie.

The set of all the decision gates in a circuit C is denoted by decision (C). Given a gate v of C, we denote by C_{v} the subcircuit of C rooted in v to be the circuit whose gates are the gates reachable from v by following a directed path in C. We define the variable set of v, denoted by $\operatorname{var}(v) \subseteq X$, to be the set of variables x labelling a decision gate in C_{v}. The variable evaluated by a decision gate v is denoted by decvar (v). The size $|C|$ of a $\{\bowtie$, dec $\}$-circuit is defined to be the number of edges of its underlying DAG.

We define the relation $\operatorname{rel}(v) \subseteq D^{\operatorname{var}(v)}$ computed at gate v inductively as follows: if v is an input labelled by 0 , then $\operatorname{rel}(v)=\emptyset$. If v is an input labelled by 1 , then $\operatorname{rel}(v)=D^{\emptyset}$, that is, $\operatorname{rel}(v)$ is the relation containing only the empty tuple. Otherwise, let v_{1}, \ldots, v_{k} be the inputs of v. If v is a \bowtie-gate, then $\operatorname{rel}(v)$ is defined to be $\operatorname{rel}\left(v_{1}\right) \bowtie \ldots \bowtie \operatorname{rel}\left(v_{k}\right)$. If v is a decision gate labelled by a variable $x, \operatorname{rel}(v)=\left(\left[x \leftarrow \ell\left(e_{1}\right)\right] \bowtie \operatorname{rel}\left(v_{1}\right)\right) \cup \ldots \bar{U}\left(\left[x \leftarrow \ell\left(e_{k}\right)\right] \bowtie \operatorname{rel}\left(v_{k}\right)\right)$ where e_{i} is the incoming edge $\left(v_{i}, v\right)$. It is readily verified that $\operatorname{rel}(v)$ is a relation on domain D and variables $\operatorname{var}(v)$. The relation computed by C over a set of variables X (assuming $\operatorname{var}(C) \subseteq X)$, denoted by rel $X_{X}(C)$, is defined to be $\operatorname{rel}($ out $(C)) \times D^{X \backslash \operatorname{var}(\text { out }(C))}$.

To ease notation, we use the following convention: if v is a decision-gate and $d \in D$, we denote by v_{d} the gate of C that is connected to v by an edge labeled by d.

Deciding whether the relation computed by a $\{\bowtie$, dec $\}$-circuit is non-empty is NP-complete by a straightforward reduction to model checking of conjunctive queries [14]. Such circuits are hence of little use to get tractability results. We are therefore more interested in the following restriction of $\{\bowtie$, dec $\}$-circuits: a $\{\times$, dec $\}$-circuit C is a $\{\bowtie$, dec $\}$-circuit such that: (i) for every \bowtie-gate v of C with inputs v_{1}, \ldots, v_{k} and $i<j \leqslant k$, it holds that $\operatorname{var}\left(v_{i}\right) \cap \operatorname{var}\left(v_{j}\right)=\emptyset$, (ii) for every decision gate v of C labelled by x with inputs v_{1}, \ldots, v_{k} and $i \leqslant k$, it holds that $x \notin \operatorname{var}\left(v_{i}\right)$. Checking whether the relation computed by a $\{\times, \operatorname{dec}\}$-circuit C is non-empty can be done in time $O(|C|)$ by a dynamic programming algorithm propagating in a bottom-up fashion whether rel (v) is empty. Similarly, given a $\{\times, \operatorname{dec}\}$-circuit C, one can compute the size of $\operatorname{rel}(C)$ in polynomial time in $|C|$ by a dynamic programming algorithm propagating in a bottom-up fashion $|\operatorname{rel}(v)|$.

Ordered Relational Circuits. Let X be a set of variables and \prec an order on X. We say that a $\{\times$, dec $\}$-circuit C on domain D and variables X is a \prec-ordered $\{\times$, dec $\}$-circuit if for every decision gate v of C labelled with $x \in X$, it holds that for every $y \in \operatorname{var}(v) \backslash\{x\}$, $x \prec y$. We simply say that a circuit C is an ordered $\{\times, \operatorname{dec}\}$-circuit if there exists some order \prec on X such that C is a \prec-ordered $\{\times$, dec $\}$-circuit.

[^1]

Figure 2 Example of a simple ordered $\{\times$, dec $\}$-circuit. The domain used is $\{0,1,2\}$ and the variable set is $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Notice how the variables on both sides of the \times-gates are interweaved.

Frontiers. A prefix assignment of size p is an assignment of variables $\tau \in D^{\left\{x_{1}, \ldots, x_{p}\right\}}$ with $p \leqslant n$. When answering direct access tasks, we will need to be able to build the subcircuit associated with a given prefix assignment. When dealing with $\{\times$, dec $\}$-circuits, multiple gates can be reached at the same time while following a prefix assignment, due to the \times-gates. To handle these cases, we introduce several new notions.

Let v be a decision gate in a $\{\times, \operatorname{dec}\}$-circuit C. We define the set $\operatorname{sink}(v)$ as:

$$
\operatorname{sink}(v)= \begin{cases}\bigcup_{w \in \operatorname{inputs}(v)} \operatorname{sink}(w) & \text { if } v \text { is a } \times \text {-gate } \\ \{v\} & \text { otherwise (that is, } v \text { is an input or a decision gate) }\end{cases}
$$

From this definition, we can infer the following property:

- Lemma 3. For any gate v, we have that the set of tuples $\operatorname{rel}(v)=X_{w \in \operatorname{sink}(v)} \operatorname{rel}(w)$.

Proof. We prove this by induction on the circuit. If v is a decision gate or an input, then, as $\operatorname{sink}(v)=\{v\}$, the property is trivial. If v is a \times-gate, then by definition, $\operatorname{rel}(v)=$ $X_{w \in \operatorname{inputs}(v)} \operatorname{rel}(w)$. By our induction hypothesis, $\operatorname{rel}(w)=X_{g \in \operatorname{sink}(w)} \operatorname{rel}(g)$. Therefore, by associativity and commutativity of the Cartesian product, $\operatorname{rel}(v)=X_{w \in \operatorname{inputs}(v)} X_{g \in \operatorname{sink}(w)} \operatorname{rel}(g)=$ $X_{g \in \bigcup_{w \in \operatorname{inputs}(v)} \operatorname{sink}(w)} \operatorname{rel}(g)=X_{g \in \operatorname{sink}(v)} \operatorname{rel}(v)$.

Given τ a prefix assignment, the frontier of τf_{τ} in C is defined algorithmically as follows:

1. instantiate a set F with out (C), the root of the circuit
2. as long as F is not stable, do:

- if $v \in F$ is a \times-gate, $F:=(F \backslash\{v\}) \cup \operatorname{sink}(v)$
= if $v \in F$ is a decision gate and the variable labelling v is assigned in the prefix $\left(\operatorname{decvar}(v) \in\left\{x_{1}, \ldots, x_{p}\right\}\right), F:=(F \backslash\{v\}) \cup\left\{v_{\tau(x)}\right\}$

3. if F contains a \perp-gate, then $f_{\tau}=\emptyset$, otherwise $f_{\tau}=F$.

If, for a given gate v, the set $\operatorname{sink}(v)$ contains a \perp-gate, then the circuit is no longer satisfiable, which is why we return \emptyset in this case. Note that this should not happen while building the k-th solution for C.

Frontiers are particularly useful because they can be efficiently computed and the relation they represent is essentially the tuples of the relation represented by C that agree with τ. The
set $\operatorname{var}\left(f_{\tau}\right)$ representing the set of variables of the frontier is defined as $\operatorname{var}\left(f_{\tau}\right)=\bigcup_{v \in f_{\tau}} \operatorname{var}(v)$. We denote by rel $\left(f_{\tau}\right)$ the relation on variables $\operatorname{var}\left(f_{\tau}\right)$ defined as $X_{v \in f_{\tau}} \operatorname{rel}(v)$.

- Remark 4. For an empty prefix, we have that $f_{\langle \rangle}=\operatorname{sink}$ (out). For a given prefix τ of length $p, f_{\tau \cup\left\{x_{p+1} \leftarrow d\right\}}$ can be built from the frontier of τ. Two cases can arise: either the variable x_{p+1} is evaluated by the frontier, meaning that there exists a decision gate $v \in f_{\tau}$ such that decvar $(v)=x_{p+1}$, or not. In the former case, the frontier associated with the prefix $\tau^{\prime}=\tau \cup\left\{x_{p+1}\right\} \leftarrow d$ is obtained by the following operation: $f_{\tau^{\prime}}=\left(f_{\tau} \backslash\{v\}\right) \cup \operatorname{sink}\left(v_{d}\right)$. In the latter case, there is no gate labelled by x_{p+1} in the frontier, so it remains untouched, $f_{\tau^{\prime}}=f_{\tau}$.

For a prefix τ on variables $\left\{x_{1}, \ldots, x_{p}\right\}$, we denote $\sigma_{\tau}(R)$ the relation $\sigma_{x_{1}=\tau\left(x_{1}\right), \ldots, x_{p}=\tau\left(x_{p}\right)}(R)$.

- Lemma 5. Let τ be a prefix assignment on variables $\left\{x_{1}, \ldots, x_{p}\right\}$. Then we have that $\sigma_{\tau}\left(\operatorname{rel}_{X}(C)\right)=\{\tau\} \times \operatorname{rel}\left(f_{\tau}\right) \times D^{\left\{x_{p+1}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\tau}\right)}$.

Proof. We prove the lemma by induction on the size of the prefix. For an empty prefix $\tau=\langle \rangle$, we have $f_{\tau}=\operatorname{sink}(\operatorname{out}(C))$. Indeed, if out (C) is a decision gate or input, then it is trivial, otherwise we simply sink through the \times-gate since no variable is assigned. We have that $\sigma_{\langle \rangle}\left(\operatorname{rel}_{X}(C)\right)=\operatorname{rel}_{X}(C)$, which is itself by definition equal to $\operatorname{rel}(\operatorname{out}(C)) \times D^{X \backslash \operatorname{var(out(C))} \text {. From }}$ Lemma 3, we know that $\operatorname{rel}(\operatorname{out}(C))=X_{w \in \operatorname{sink}(o u t(C))} \operatorname{rel}(w)$. We know that $\operatorname{var}(\operatorname{out}(C))=$ $\operatorname{var}\left(f_{\langle \rangle}\right)$. Thus, we have that $\sigma_{\langle \rangle}\left(\operatorname{rel}_{X}(C)\right)=X_{w \in \operatorname{sink}(\text { out }(C))} \operatorname{rel}(w) \times D^{\left\{x_{1}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\langle \rangle}\right)}$.

Now suppose the property holds for any prefix τ of size p. We now show that it also holds for a prefix $\tau^{\prime}=\tau \times\left[x_{p+1} \leftarrow d\right]$.

We can rewrite $\sigma_{\tau^{\prime}}\left(\operatorname{rel}_{X}(C)\right)$ as $\sigma_{x_{p+1}=d}\left(\sigma_{\tau}\left(\operatorname{rel}_{X}(C)\right)\right)$. From the induction hypothesis, we have:

$$
\sigma_{\tau^{\prime}}\left(\operatorname{rel}_{X}(C)\right)=\sigma_{x_{p+1}=d}\left(\{\tau\} \times \operatorname{rel}\left(f_{\tau}\right) \times D^{\left\{x_{p+1}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\tau}\right)}\right)
$$

From here, we have two possibilities: either there exists a decision gate $v \in f_{\tau}$ such that $\operatorname{decvar}(v)=x_{p+1}$ or not. In the first case, we have by definition that $f_{\tau^{\prime}}=f_{\tau} \backslash\{v\} \cup \operatorname{sink}\left(v_{d}\right)$.

We start by pointing out that for a decision gate v with $x_{p+1}=\operatorname{decvar}(v)$ and $d \in D$, we have $\sigma_{x_{p+1}=d}(\operatorname{rel}(v))=\left\{\left[x_{p+1} \leftarrow d\right]\right\} \times \operatorname{rel}\left(v_{d}\right) \times D^{\operatorname{var}(v) \backslash\left(\left\{x_{p+1}\right\} \cup \operatorname{var}\left(v_{d}\right)\right)}$, that is that the relation computed by v when assigning the variable x_{p+1} labelling v a value d is equal to the relation computed by its input v_{d} extended by the set of tuples representing the different valuations for the variables not evaluated by the subcircuit.

We can therefore write:

$$
\sigma_{\tau^{\prime}}\left(\operatorname{rel}_{X}(C)\right)=\sigma_{x_{p+1}=d}\left(\{\tau\} \times \operatorname{rel}\left(f_{\tau}\right) \times D^{\left\{x_{p+1}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\tau}\right)}\right)
$$

since x_{p+1} only appears in the frontier :

$$
=\{\tau\} \times D^{\left\{x_{p+1}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\tau}\right)} \times \sigma_{x_{p+1}=d}(\operatorname{rel}(v)) \times \underset{w \in f_{\tau} \backslash\{v\}}{X} \operatorname{rel}(w)
$$

from the previous relation:

$$
\begin{aligned}
& =\{\tau\} \times D^{\left\{x_{p+1}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\tau}\right)} \times\left\{\left[x_{p+1} \leftarrow d\right]\right\} \times \operatorname{rel}\left(v_{d}\right) \times D^{\operatorname{var}(v) \backslash\left(\left\{x_{p+1}\right\} \cup \operatorname{var}\left(v_{d}\right)\right)} \\
& \quad \times \underset{w \in f_{\tau} \backslash\{v\}}{\times} \operatorname{rel}(w) \\
& \text { from Lemma 3: } \\
& =\{\tau\} \times D^{\left\{x_{p+1}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\tau}\right)} \times\left\{\left[x_{p+1} \leftarrow d\right]\right\} \times \underset{w \in \operatorname{sink}\left(v_{d}\right)}{X} \operatorname{rel}(w)
\end{aligned}
$$

$$
\begin{aligned}
& \times D^{\operatorname{var}(v) \backslash\left(\left\{x_{p+1}\right\} \cup \operatorname{var}\left(v_{d}\right)\right)} \times \underset{w \in f(\{v\}}{X} \operatorname{rel}(w) \\
& =\{\tau\} \times\left\{\left[x_{p+1} \leftarrow d\right]\right\} \times D^{\left\{x_{p+1}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\tau}\right)} \times D^{\operatorname{var}(v) \backslash\left(\left\{x_{p+1}\right\} \cup \operatorname{var}\left(v_{d}\right)\right)} \\
& \times \underset{w \in \operatorname{sink}\left(v_{d}\right)}{X} \operatorname{rel}(w) \times \underset{w \in f_{\tau} \backslash\{v\}}{X} \operatorname{rel}(w) \\
& =\left\{\tau^{\prime}\right\} \times \underset{w \in f}{X} \operatorname{rel}(w) \times D^{\left\{x_{p+2}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(\tau^{\prime}\right)}
\end{aligned}
$$

In the second case, there is no gate in f_{τ} labelled by x_{p+1}. Since the circuit is ordered, it means that $x_{p+1} \notin \operatorname{var}\left(f_{\tau}\right)$. We can therefore write:

$$
\begin{aligned}
\sigma_{\tau^{\prime}}\left(\operatorname{rel}_{X}(C)\right) & =\{\tau\} \times \underset{w \in f_{\tau}}{X} \operatorname{rel}(w) \times \sigma_{x_{p+1}=d}\left(D^{\left\{x_{p+1}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\tau}\right)}\right) \\
& \text { since } x_{p+1} \text { does not appear in the frontier or } \tau: \\
& =\{\tau\} \times \underset{w \in f_{\tau}}{X} \operatorname{rel}(w) \times\left\{\left[x_{p+1} \leftarrow d\right]\right\} \times D^{\left\{x_{p+2}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\tau}\right)} \\
& \text { since } f_{\tau}=f_{\tau^{\prime}}: \\
& =\left\{\tau^{\prime}\right\} \times \underset{w \in f_{\tau^{\prime}}}{X} \operatorname{rel}(w) \times D^{\left\{x_{p+2}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\tau^{\prime}}\right)}
\end{aligned}
$$

Since the property is true for the empty prefix and inductively true, we conclude that it is true for any prefix τ.

In order to be useful in practice, building and using the frontier of a prefix assignment τ cannot be too expensive. We formulate the following complexity statement:

- Lemma 6. Let τ be a prefix assignment over the set of variables $X=\left\{x_{1}, \ldots, x_{p}\right\}$. We can compute f_{τ} in time $\mathcal{O}(|X|)$.
Proof. Let τ be a prefix assignment of size p. The frontier f_{τ} is built in a top-down fashion, by following the edges corresponding to the variable assignments in τ. For each variable x assigned by τ, we follow at most one edge from a decision gate v such that decvar $(v)=x$ and the edge is labelled $\tau(x)$. This means p edges are followed for the assignments. Moreover, to get to v, we might have to follow edges from \times-gates. Since the variable sets underneath x-gates are disjoint from one another, we have that the number of such edges is bounded by $|X|$. This implies the total cost of building the frontier f_{τ} is $\mathcal{O}(|X|+p)=\mathcal{O}(|X|)$.

3.2 Direct Access for ordered $\{\times, \operatorname{dec}\}$-circuits

The main result of this section is an algorithm that allows for direct access for a ordered $\{\times, \operatorname{dec}\}$-circuit on domain D and variables X. More precisely, we prove the following:

- Theorem 7. Let \prec be an order on X and C be $a \prec$-ordered $\{\times$, dec $\}$-circuit on domain D and variables X, then we can have a direct access on $\operatorname{rel}(C)$ for the order $\prec_{\text {lex }}$ with access time polynomial in $\mathcal{O}($ poly $|X|$ polylog $|D|)$ and precomputation time $\mathcal{O}(|C| \cdot$ poly $|X| \operatorname{polylog}|D|)$.

Precomputation. In this section, we assume that C is a \prec-ordered $\{\times$, dec $\}$-circuit with respect to X. The count label of C, denoted by nrel $_{C}$, is the mapping from decision $(C) \times D$ to \mathbb{N} such that $\operatorname{nrel}_{C}(v, d)=\# \sigma_{x \leqslant d}(\operatorname{rel}(v))$, that is, $\operatorname{nrel}_{C}(v, d)$ is the number of tuples from $\operatorname{rel}(v)$ that assign a value on x smaller or equal than d. The precomputation step aims to compute nrel $_{C}$ so that we can access nrel $C_{C}(v, d)$ quickly.

Our algorithm performs a bottom-up computation of the number of satisfying tuples in $\operatorname{rel}(v)$ for every gate v of C. If v is a decision-gate on variable x, then $\operatorname{rel}(v)$ is defined as a disjoint extended union from the relation computed by its input. It is then easy to see that:

$$
\begin{equation*}
|\operatorname{rel}(v)|=\sum_{w \in \operatorname{input}(v)}|\operatorname{rel}(w)| \times|D|^{|\Delta(v, w)|} \text { where } \Delta(v, w)=\operatorname{var}(v) \backslash(\{x\} \cup \operatorname{var}(w)) \tag{1}
\end{equation*}
$$

Similarly, nrel $_{C}(v, d)$ can be computed by restricting the previous relation on the inputs of v that set x to a value $d^{\prime} \leqslant d$, that is:

$$
\begin{equation*}
\operatorname{nrel}_{C}(v, d)=\sum_{w \in \operatorname{input}(v), \ell(w, v) \leqslant d}|\operatorname{rel}(w)| \times|D|^{|\Delta(v, w)|} \tag{2}
\end{equation*}
$$

Observe that from this relation, we can deduce that for a decision gate v, if $d^{\prime} \in D$ does not label any edge (w, v) then $\operatorname{nrel}_{C}\left(v, d^{\prime}\right)=\operatorname{nrel}_{C}(v, d)$ where d is the largest value such that $d<d^{\prime}$. For a decision gate v of C, we will hence only compute $\operatorname{nrel}_{C}(v, d)$ for $d \in D$ such that there is an edge (w, v) labeled by d.

Finally, if v is a Cartesian product, we clearly have $|\operatorname{rel}(v)|=X_{w \in \operatorname{input}(v)}|\operatorname{rel}(w)|$. Hence, one can compute nrel $_{C}$ using a dynamic algorithm that inductively computes nrel ${ }_{C}(v, d)$ for each decision-gate v of the circuit and also $|\operatorname{rel}(v)|$ and $\operatorname{var}(v)$ for every gate.

More precisely, the dynamic programing algorithm works as follows: we start by performing a topological ordering of the gates of C that is compatible with the underlying DAG of the circuit. In particular, it means that for a gate v and an input w of v, the topological ordering has to place w before v. Moreover, we also add the following constraint: if w and w^{\prime} are both inputs of a decision gate v and if the edge (w, v) is labeled by $d \in D$ and the edge $\left(w^{\prime}, v\right)$ is labeled by $d^{\prime} \in D$ such that $d<d^{\prime}$, then we ask for the topological order to place w before w^{\prime}. It easy easy to construct such an ordering by simply doing a topological order of the DAG of C augmented by edges $\left(w, w^{\prime}\right)$ where w and w^{\prime} are inputs of the same decision gate v and (w, v) has a label smaller than $\left(w^{\prime}, v\right)$. This modified DAG has size at most $2|C|$ and since computing a topological ordering of a DAG can be done in linear time, we can construct it in time $O(|C|)$.

Now, we dynamically compute $|\operatorname{rel}(v)|, \operatorname{var}(v)$ for every gate v and $\operatorname{nrel}_{C}(v, d)$ for every gate $v \in C$ and $d \in D$ as follows: we start by allocating two tables $T_{\text {rel }}$ and $T_{\text {var }}$ of size $|C|$ and a table $T_{\text {nrel }_{C}}$ of size $|C|$ where each entry of $T_{\text {nrel }_{C}}$ is intialized with an array of size $|D|$ where each entry is initialized as -1 . We then populate each entry of these tables following the previously constructed topological ordering and using the relations written above (see (1) and (2)) and the fact that $\operatorname{var}(v)=\bigcup_{w \in \operatorname{input}(v)} \operatorname{var}(w)$. To compute nrel ${ }_{C}$ for a decisiongate v, we let $\left(w_{0}, v\right), \ldots,\left(w_{k}, v\right)$ be the incoming edge of v ordered by increasing labelled $d_{0}<\cdots<d_{k}$. We then initialize $T_{\text {nrel }_{C}}\left[v, d_{0}\right]$ with $\operatorname{nrel}_{C}\left(v, d_{0}\right)=\left|\operatorname{rel}\left(w_{0}\right)\right| \cdot|D|^{\left|\Delta\left(v, w_{0}\right)\right|}$ and compute $T_{\text {nrel }_{C}}\left[v, d_{i+1}\right]$ as $T_{\text {nrel }_{C}}\left[v, d_{i}\right]+\left|\operatorname{rel}\left(w_{i+1}\right)\right| \cdot|D|^{\left|\Delta\left(v, w_{i+1}\right)\right|}$ using relation (2).

An example of an ordered $\{\times, \operatorname{dec}\}$-circuit that has been annotated by our algorithm is presented in Figure 3.

It is clear from the relations (2) that at the end of this precomputation, we have $T_{\text {nrel }}^{C}$ $[v, d]$ contains nrel $_{C}(v, d)$ if d labels an incoming edge of v. In practice, we will not need to access nrel $_{C}\left(v, d^{\prime}\right)$ for other values $d^{\prime} \in D$ but we observe here that we can still compute it in time polylog $(|D|)$ from $T_{\text {nrel }_{C}}$ and C as follows: we can find the largest $d \in D$ such that d labels an incoming edge of v and $d<d^{\prime}$ using a binary search on the input edges of v and return $T_{\text {nrel }_{C}}[v, d]$ if such a d exists and 0 otherwise. We hence have:

Figure 3 Example of a simple, annotated $\{\times, \operatorname{dec}\}$-circuit. The domain used is $\{0,1,2\}$ for variables x_{1}, x_{2} and x_{3}. The lists shown to the left of the decision gates represent the values of nrel ${ }_{C}$ for those gates.

Lemma 8 (Precomputation complexity). Given $a \prec$-ordered $\{\times$, dec $\}$-circuit C, we can compute a data structure in time $\mathcal{O}(|C| \cdot \operatorname{poly}|X| \operatorname{polylog}|D|)$ that allows us to access $\operatorname{var}(v)$, $|\operatorname{rel}(v)|$ for every gate v of C in time $\mathcal{O}(1)$ and $\operatorname{nrel}_{C}(v, d)$ for every decision gate v and $d \in D$ in time $\mathcal{O}($ polylog $(|D|))$.

Proof. The data structure simply consists in the three tables $T_{\text {nrel }}^{C}, T_{\text {rel }}$ and $T_{\text {var }}$. It is easy to see that each entry of $T_{\text {var }}$ can be computed in time O (poly $(|X|)$ since we only have to compute union of sets of elements in X hence one can compute $T_{\text {var }}$ with $\mathcal{O}(|C|$ poly $(|X|))$. Now observe that to compute $T_{\text {nrel }}^{C}$, one has to perform at most two arithmetic operations for each edge of C. Indeed, to compute $T_{\text {rel }}[v]$, one has to perform at most one addition and one multiplication for each $w \in \operatorname{input}(v)$, whose cost can be associated to the edge (w, v). Similarly, to compute $T_{\text {nrel }_{C}}[v, d]$ as described in the previous paragraph, we do one addition and one multiplication for each edge (w, v) in the circuit. Hence, we perform at most $\mathcal{O}(|C|)$ arithmetic operations. Now, the cost of these arithmetic operations is polynomial in the size of the integer they are performed on. Since these integers are sizes of relation on domain D and variable $Y \subseteq X$, their value is at most $|D|^{|X|}$ and they can be encoded on $|X| \log |D|$ bits. Hence, we have a total complexity of $\mathcal{O}(|C|$ poly $|X|$ polylog $|D|)$.

Direct access. We now show how the precomputation from Lemma 8 allows us to get direct access for ordered $\{\times$, dec $\}$-circuits. We first show how one can solve a direct access task for any relation as long as we have access to very simple counting oracles. We then show that one can quickly simulate these oracle calls in ordered $\{\times$, dec $\}$-circuits using precomputed values and conclude.

- Lemma 9. Assume that we are given a relation $R \subseteq D^{X}$ with $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and an oracle such that for every prefix assignment $\tau \in D^{\left\{x_{1}, \ldots, x_{p}\right\}}$ and $d \in D$, it returns $\sigma_{x_{p+1} \leqslant d}\left(\# \sigma_{\tau}(R)\right)$. Then, for any $k \leqslant|R|$, we can compute $R[k]$ using $\mathcal{O}(n \operatorname{polylog}|D|)$ oracle calls, where $n=|X|$.

Proof. We prove this lemma by induction: we show that for every relation of R arity n, we can compute $R[k]$ using $n \cdot\lceil\log |D|\rceil$ oracle calls. We start by considering that R is a relation on one variable x. Let $\alpha=R[k]$. We are looking for $d \in D$ such that $\alpha(x)=d$. In this case, since $x=\min (\operatorname{var}(R))$, we know from Lemma 1 that d is the minimal value such that $\# \sigma_{x \leqslant d}(R) \geqslant k$. We can compute d by doing a dichotomic search on the domain values using $\lceil\log |D|\rceil$ calls to the oracle since the value $\# \sigma_{x \leqslant d}(R)$ increases when d increases.

Now, assume that the property holds for relations on variable sets of size n, that is, that we can find the k-th solution with $n \cdot\lceil\log |D|\rceil$ oracle calls. Let R be a relation on a set of variables $\left\{x_{1}, \ldots, x_{n+1}\right\}$. From Lemma 1, we know that $R[k]=R^{\prime}\left[k^{\prime}\right]$, where $R^{\prime}=\sigma_{x_{1}=d_{1}}(R)$, d_{1} is the minimal value such that $\sigma_{x_{1} \leqslant d_{1}}(R) \geqslant k$ and $k^{\prime}=k-\# \sigma_{x_{1}<d_{1}}(R)$. As we saw earlier, we can find d_{1} using $\lceil\log |D|\rceil$ oracle calls of the form $\# \sigma_{x_{1} \leqslant d}(R)$ and using a dichotomic search on d.

Now, by induction, we are able to compute $R^{\prime}\left[k^{\prime}\right]$ using $n \cdot\lceil\log |D|\rceil$ oracle calls of the form $\# \sigma_{x_{p+1} \leqslant d}\left(\sigma_{\tau^{\prime}}\left(R^{\prime}\right)\right)$ for τ^{\prime} an assignment of $D^{\left\{x_{2}, \ldots, x_{p}\right.}$. However, observe that $\# \sigma_{x_{p+1} \leqslant d}\left(\sigma_{\tau^{\prime}}\left(R^{\prime}\right)\right)=\# \sigma_{x_{p+1} \leqslant d}\left(\sigma_{\tau}(R)\right)$ with $\tau=\tau^{\prime} \times\left[x_{1} \leftarrow d_{1}\right]$ since $R^{\prime}=\sigma_{x_{1}=d_{1}}(R)$. Hence we can compute $R[k]$ using $\lceil\log |D|\rceil+n \cdot\lceil\log |D|\rceil=(n+1)\lceil\log |D|\rceil$ oracle calls to relation R, which concludes the induction step.

In order to evaluate the true complexity of answering direct access tasks, we now also have to evaluate the complexity of a single oracle call.

- Lemma 10. Let C be a circuit such that $\operatorname{nrel}_{C}(v, d)$ and $\operatorname{var}(v)$ have been precomputed and can be access in time $\mathcal{O}(\operatorname{polylog}(|D|))$ for every gate v of C and $d \in D$. Let τ be a prefix assignment of $D^{\left\{x_{1}, \ldots, x_{p}\right\}}$ and $d \in D$, then $\# \sigma_{x_{p+1} \leqslant d}\left(\sigma_{\tau}(\operatorname{rel}(C))\right)$ can be computed in time $\mathcal{O}($ poly (n) polylog $|D|)$, where $n=|X|$.

Proof. We start by building the frontier f_{τ} associated with the prefix assignment τ. From Lemma 6, we know this can be done in time $\mathcal{O}(n)$. By Lemma 5:

We can rewrite:

$$
\begin{aligned}
\sigma_{x_{p+1} \leqslant d}\left(\sigma_{\tau}(\operatorname{rel}(C))\right) & =\sigma_{x_{p+1} \leqslant d}\left(\{\tau\} \times \operatorname{rel}\left(f_{\tau}\right) \times D^{\left\{x_{p+1}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\tau}\right)}\right) \\
& =\{\tau\} \times \sigma_{x_{p+1} \leqslant d}\left(\operatorname{rel}\left(f_{\tau}\right) \times D^{\left\{x_{p+1}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\tau}\right)}\right)
\end{aligned}
$$

There are now two possible outcomes: either x_{p+1} is tested by f_{τ} or not. In the first case, since x_{p+1} only appears in the frontier, tested by a gate v, we have:

$$
\sigma_{x_{p+1} \leqslant d}\left(\sigma_{\tau}(\operatorname{rel}(C))\right)=\{\tau\} \times \sigma_{x_{p+1} \leqslant d}(\operatorname{rel}(v)) \times \underset{w \in f_{\tau} \backslash\{v\}}{X} \operatorname{rel}(w) \times D^{\left\{x_{p+1}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\tau}\right)}
$$

Hence $\sigma_{x_{p+1} \leqslant d}\left(\sigma_{\tau}(\operatorname{rel}(C))\right)$ can be computed as:

$$
\begin{aligned}
\# \sigma_{x_{p+1} \leqslant d}\left(\sigma_{\tau}(\operatorname{rel}(C))\right) & =\# \sigma_{x_{p+1} \leqslant d}(\operatorname{rel}(v)) \times \prod_{w \in f_{\tau} \backslash\{v\}} \# \operatorname{rel}(w) \times|D|^{\left|\left\{x_{p+1}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\tau}\right)\right|} \\
& =\operatorname{nrel}_{C}(v, d) \times \prod_{w \in f_{\tau} \backslash\{v\}} \# \operatorname{rel}(w) \times|D|^{\left|\left\{x_{p+1}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\tau}\right)\right|} .
\end{aligned}
$$

The values of $\operatorname{nrel}_{C}(v, d)$ and of $\# \operatorname{rel}(w)$ for $w \in f_{\tau} \backslash\{v\}$ have been precomputed and can be accessed in time $\mathcal{O}($ polylog$(|D|))$. Now by definition $\operatorname{var}\left(f_{\tau}\right)=\bigcup_{v \in f_{\tau}} \operatorname{var}(v)$. Hence, since $\operatorname{var}(v)$ has been precomputed, we can compute $\left|\left\{x_{p+2}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\tau}\right)\right|$ in $\mathcal{O}(n)$. The multiplication has at most n elements, the cost of this operation is therefore simply $\mathcal{O}($ poly (n) polylog $|D|)$.

In the second case where x_{p+1} is not tested by f_{τ}, we have that $x_{p+1} \notin \operatorname{var}\left(f_{\tau}\right)$ since the circuit is ordered. Hence, we apply a similar reasoning to obtain:

$$
\# \sigma_{\tau \wedge x_{p+1} \leqslant d}(\operatorname{rel}(C))=\# \sigma_{x_{p+1} \leqslant d}\left(D^{\left\{x_{p+1}\right\}}\right) \cdot|D|^{\left|\left\{x_{p+2}, \ldots, x_{n}\right\} \backslash \operatorname{var}\left(f_{\tau}\right)\right|} \cdot \prod_{w \in f_{\tau}} \# \operatorname{rel}(w)
$$

The value of $\# \sigma_{x_{p+1} \leqslant d}\left(D^{\left\{x_{p+1}\right\}}\right)$ is simply $\operatorname{rank}(d)$. As before, we can compute the multiplication in $\mathcal{O}($ poly (n) polylog $|D|)$.

In short, we can follow the edges in the circuit by choosing the correct edge from the precomputed values in nrel_{C}. A short visual example of the followed paths for different direct access tasks over the same annotated circuit is presented in Figure 4. Notice how in the case where $k=13$, the fact that we meet a \times-gate implies that we follow both paths at once. At one point of the algorithm, a frontier containing both the gates for x_{2} and x_{3} exists. The values shown at the right of the reached decision gates show how the index of the searched tuples evolves during a run of the search algorithm.

(a) $k=7$

(b) $k=13$

Figure 4 Examples of the paths followed during different direct access tasks on the same annotated ordered $\{\times$, dec $\}$-circuit.

The proof of Theorem 7 is now an easy corollary of Lemmas 9 and 10. Indeed, after having precomputed nrel $_{C}$ and var using 8, we can answer direct access tasks using the oracle based algorithm from Lemma 9 and Lemma 10 shows that these oracle accesses are in fact tractable in ordered circuits.

4 From join queries to ordered $\{\times$, dec $\}$-circuits

In this section, we present a simple top-down algorithm, that can be seen as an adaptation of the exhaustive DPLL algorithm from [32], such that on input Q, \prec and \mathbf{D}, it returns a \succ-ordered $\{\times$, dec $\}$-circuit C such that $\operatorname{rel}(C)=Q(\mathbf{D})$, where Q is a join query, \prec an order on its variables and \mathbf{D} a database. Exhaustive DPLL is an algorithm that has been originally devised to solve the \#SAT problem. It has been observed by Huang and Darwiche [20] that the trace of this algorithm implicitly builds a Boolean circuit, corresponding to the
$\{\times, \operatorname{dec}\}$-circuits on domain $\{0,1\}$, enjoying interesting tractability properties. We show how to adapt it in the framework of signed join queries. The algorithm itself is presented in Section 4.1. We study the complexity of this algorithm in Section 4.3 depending on the structure of Q and \prec, using hypergraph structural parameters introduced in Section 4.2.

4.1 Exhaustive DPLL for signed join queries

The main idea of DPLL for signed join queries is the following: given an order \prec on the variables of a join query Q and a database \mathbf{D}, we construct a \succ-ordered $\{\times$, dec $\}$-circuit (where $x \succ y$ iff $y \prec x)^{3}$ computing $\llbracket Q \rrbracket^{\mathbf{D}}$ by successively testing the variables of Q with decision gates, from the highest to the lowest wrt \prec. At its simplest form, the algorithm picks the highest variable x of Q wrt \prec, creates a new decision gate v on x and then, for every value $d \in D$, sets x to d and recursively computes a gate v_{d} computing the subset of $\llbracket Q \rrbracket^{\mathrm{D}}$ where $x=d$. We then add v_{d} as an input of v and proceed with the next value $d^{\prime} \in D$. This approach is however not enough to get interesting tractability results. We hence add the following optimizations. First, we keep a cache of already computed queries so that if we recursively call the algorithm twice on the same input, we can directly return the previously constructed gate. Moreover, if we detect that the answers of Q are the Cartesian product of two or more subqueries Q_{1}, \ldots, Q_{k}, then we create a new \times-gate v, recursively call the algorithm on each component Q_{i} to construct a gate w_{i} and plug each w_{i} to v. Detecting such cases is mainly done syntactically, by checking whether the query can be partitionned into subqueries having disjoint variables. However, this approach would fail to give good complexity bounds in the presence of negative atoms. To achieve the best complexity, we also remove from Q every negative atom as soon as they are satisfied by the current partial assignment. This allows us to discover more cases where the query has connected components.

The theoretical performance of the previously described algorithm may however vary if one is not careful in the way the recursive calls are actually made. We hence give a more formal presentation the algorithm, whose pseudocode is presented in Algorithm 1, on which we will be able to prove good upper bounds in Section 4.3. Since we are not yet insterested in complexity analysis, we deliberately let the underlying datastructures for encoding relations unspecified and delay this discussion to Section 4.3.

A few notations are used in Algorithm 1. Given a database \mathbf{D} on domain D and a tuple $\tau \in D^{Y}$, we denote by $\llbracket Q \rrbracket_{\tau}^{\mathbf{D}}$ the set of tuples $\sigma \in D^{\operatorname{var}(Q) \backslash Y}$ that are answers of Q when extended with τ. More formally, $\sigma \in \llbracket Q \rrbracket_{\tau}^{\mathbf{D}}$ if and only if $\left.(\sigma \times \tau)\right|_{\operatorname{var}(Q)} \in \llbracket Q \rrbracket^{\mathbf{D}}$. Given an atom $R(\mathbf{x})$, a database \mathbf{D} and a tuple $\tau \in D^{Y}$, we say that $R(\mathbf{x})$ is inconsistent with τ wrt \mathbf{D} (or simply inconsistent with τ when \mathbf{D} is clear from context) if there is no $\sigma \in R^{\mathbf{D}}$ such that $\tau \simeq \sigma$. Observe that if Q contains a positive atom $R(\mathbf{x})$ that is inconsistent with τ then $\llbracket Q \rrbracket_{\tau}^{\mathrm{D}}=\emptyset$. Similarly, if Q contains a negative atom $\neg R(\mathbf{x})$ such that τ assigns every variable of \mathbf{x} and $\tau(\mathbf{x}) \in R$, then $\llbracket Q \rrbracket_{\tau}^{\mathrm{D}}=\emptyset$. If one of this case arises, we say that Q is inconsistent with τ. Now observe that if $\neg R(\mathbf{x})$ is a negative atom of Q such that $R(\mathbf{x})$ is inconsistent with τ, then $\llbracket Q \rrbracket_{\tau}^{\mathbf{D}}=\llbracket Q^{\prime} \rrbracket_{\tau}^{\mathbf{D}} \times D^{W}$ where $Q^{\prime}=Q \backslash\{\neg R(\mathbf{x})\}$ and $W=\operatorname{var}(Q) \backslash \operatorname{var}\left(Q^{\prime}\right)$ (some variables of Q may only appear in the atom $\neg R(\mathrm{x})$). This motivates the following definition: the simplification of Q wrt to τ and \mathbf{D}, denoted by $Q \Downarrow\langle\tau, \mathbf{D}\rangle$ or simply by $Q \Downarrow \tau$ when \mathbf{D} is clear from context, is defined to be the subquery of Q obtained by removing from Q every

[^2]```
Algorithm 1 An algorithm to compute a \(\succ\)-ordered \(\{\times\), dec \(\}\)-circuit representing \(\llbracket Q \rrbracket^{\mathbf{D}}\)
procedure \(\operatorname{DPLL}(Q, \tau, \mathbf{D}, \prec)\)
 if \((Q, \tau)\) is in cache then return cache \((Q, \tau)\)
 if \(Q\) is inconsistent with \(\tau\) then return \(\perp\)-gate
 if \(\tau\) assigns every variable in \(Q\) then return \(T\)-gate
 \(x \leftarrow \max _{\prec} \operatorname{var}(Q)\)
 for \(d \in D\) do
 \(\tau^{\prime} \leftarrow \tau \times[x \leftarrow d]\)
 if \(Q\) is inconsistent with \(\tau^{\prime}\) then \(v_{d} \leftarrow \perp\)-gate
 else
 Let \(Q_{1}, \ldots, Q_{k}\) be the \(\tau^{\prime}\)-connected components of \(Q \Downarrow \tau^{\prime}\)
 for \(i=1\) to \(k\) do
 \(w_{i} \leftarrow \operatorname{DPLL}\left(Q_{i}, \tau_{i}, \mathbf{D}, \prec\right)\) where \(\tau_{i}=\left.\tau^{\prime}\right|_{\operatorname{var}\left(Q_{i}\right)}\)
 end for
 \(v_{d} \leftarrow\) new \(\times\)-gate with inputs \(w_{1}, \ldots, w_{k}\)
 end if
 end for
 \(v \leftarrow\) new dec-gate connected to \(v_{d}\) by a \(d\)-labelled edge for every \(d \in D\)
 cache \((Q, \tau) \leftarrow v\)
 return \(v\)
end procedure
```

negative atom $\neg R(\mathbf{x})$ of $Q$ such that $R(\mathbf{x})$ is inconsistent with $\tau$. From what precedes, we clearly have $\llbracket Q \rrbracket_{\tau}^{\mathbf{D}}=\llbracket Q^{\prime} \rrbracket_{\tau}^{\mathbf{D}} \times D^{W}$ where $Q^{\prime}=Q \Downarrow\langle\tau, \mathbf{D}\rangle$ and $W=\operatorname{var}(Q) \backslash \operatorname{var}\left(Q^{\prime}\right)$.

For a tuple $\tau \in D^{Y}$ assigning a subset $Y$ of variables of $Q$, the $\tau$-intersection graph $\mathcal{I}_{\tau}^{Q}$ of $Q$ is the graph whose vertices are the atoms of $Q$ having at least one variable not in $Y$ and there is an edge between two atoms $a, b$ of $Q$ if $a$ and $b$ share a variable that is not in $Y$. Observe that $\mathcal{I}_{\tau}^{Q}$ does not depend on the values of $\tau$ but only on the variables it sets. Hence it can be computed in polynomial time in the size of $Q$ only. A connected component $C$ of $\mathcal{I}_{\tau}^{Q}$ naturally induces a subquery $Q_{C}$ of $Q$ and is called a $\tau$-connected component. $Q$ is partitioned into its $\tau$-connected components and the atoms whose variables are completely set by $\tau$. More precisely, $Q=\bigcup_{C \in \mathcal{C C}} Q_{C} \cup Q^{\prime}$ where $\mathcal{C C}$ are the connected component of $\mathcal{I}_{\tau}^{Q}$ and $Q^{\prime}$ contains every atom $a$ of $Q$ on variables $\mathbf{x}$ such that $\mathbf{x}$ only has variables in $Y$. Observe that if $\tau$ is an answer of $Q^{\prime}$, then $\llbracket Q \rrbracket_{\tau}^{\mathrm{D}}=\mathrm{X}_{C \in \mathcal{C C}} \llbracket Q_{C} \rrbracket_{\tau_{C}}^{\mathrm{D}}$ where $\tau_{C}=\left.\tau\right|_{\operatorname{var}\left(Q_{C}\right)}$ since if $C_{1}$ and $C_{2}$ are two distinct $\tau$-connected components of $\mathcal{I}_{\tau}^{Q}$, then $\operatorname{var}\left(Q_{C_{1}}\right) \cap \operatorname{var}\left(Q_{C_{2}}\right) \subseteq Y$.

We illustrate the previous definitions on the signed join query $Q\left(x_{1}, \ldots, x_{5}\right)$ defined as $\neg R\left(x_{1}, \ldots, x_{5}\right), S\left(x_{1}, x_{2}, x_{3}\right), T\left(x_{1}, x_{4}, x_{5}\right)$ and database $\mathbf{D}$ on domain $\{0,1\}$ with $R^{\mathbf{D}}=$ $\{(1,1,1,1,1)\}$. Let $\tau=\left[x_{1} \leftarrow 0\right]$. The $\tau$-intersection graph of $Q$ is a path where $\neg R\left(x_{1}, \ldots, x_{5}\right)$ is connected to $S\left(x_{1}, x_{2}, x_{3}\right)$ and $T\left(x_{1}, x_{4}, x_{5}\right)$. There is no edge between $S\left(x_{1}, x_{2}, x_{3}\right)$ and $T\left(x_{1}, x_{4}, x_{5}\right)$ since $x_{1}$ is their only common variable and it is assigned by $\tau$. Hence, $Q$ has one $\tau$-connected component containing every atom of $Q$. Now, $Q \Downarrow \tau=S\left(x_{1}, x_{2}, x_{3}\right), T\left(x_{1}, x_{4}, x_{5}\right)$ since $R\left(0, x_{2}, \ldots, x_{5}\right)$ is inconsistent over $\mathbf{D}$ and the $\tau$-intersection graph of $Q \Downarrow \tau$ consists in two isolated vertices $S\left(x_{1}, x_{2}, x_{3}\right)$ and $T\left(x_{1}, x_{4}, x_{5}\right)$. Hence $Q \Downarrow \tau$ has two $\tau$-connected components. This example also illustrates the role of simplification for discovering Cartesian products.

Algorithm 1 uses the previous observations to produce a $\succ$-ordered $\{\times$, dec $\}$-circuit. More precisely:

- Theorem 11. Let $Q$ be a signed join query, $\mathbf{D}$ a database and $\prec$ an order on $\operatorname{var}(Q)$, then $\operatorname{DPLL}(Q,\langle \rangle, \mathbf{D}, \prec)$ constructs $a \succ$-ordered $\{\times, \operatorname{dec}\}$-circuit $C$ and returns a gate $v$ of $C$ such that $\operatorname{rel}(v)=\llbracket Q \rrbracket^{\mathbf{D}}$.

Proof. The proof is by induction on the number of variables of $Q$ that are not assigned by $\tau$. We claim that $\operatorname{DPLL}(Q, \tau, \mathbf{D}, \prec)$ returns a gate computing $\llbracket Q \rrbracket_{\tau}^{\mathbf{D}}$ which is stored into cache $(Q, \tau)$. If every variable are assigned, then $\operatorname{DPLL}(Q, \tau, \mathbf{D}, \prec)$ returns either a T-gate or a $\perp$-gate depending on whether $\tau$ is inconsistent with $Q$ or not, which clearly is $\llbracket Q \rrbracket_{\tau}^{\mathbf{D}}$. Otherwise, it returns and add in the cache a decision gate $v$ connected to a gate $v_{d}$ by a $d$-labelled edge for each $d \in D$. We claim that $v_{d}$ computes $\llbracket Q \rrbracket_{\tau \times[x \leftarrow d]}^{\mathrm{D}}$. It is enough since in this case, by definition of the relation computed by a decision-gate, $v$ computes $\bigcup_{d \in D} \llbracket Q \rrbracket_{\tau \times[x \leftarrow d]}^{\mathrm{D}} \times[x \leftarrow d]=\llbracket Q \rrbracket_{\tau}^{\mathrm{D}}$.

To prove that $v_{d}$ computes $\llbracket Q \rrbracket_{\tau^{\prime}}^{\mathrm{D}}$ where $\tau^{\prime}=\tau \times[x \leftarrow d]$, we separate two cases: if $\tau^{\prime}$ is inconsistent with $Q$ then $\llbracket Q \rrbracket_{\tau^{\prime}}^{\mathbf{D}}$ is empty and $v_{d}$ is a $\perp$-gate, which is what is expected. Otherwise, let $Q_{1}, \ldots, Q_{k}$ be the $\tau^{\prime}$-connected components of $Q \Downarrow \tau^{\prime}$ and let $\tau_{i}=\left.\tau^{\prime}\right|_{\operatorname{var}\left(Q_{i}\right)}$. From what precedes, we have $\llbracket Q \rrbracket_{\tau^{\prime}}^{\mathbf{D}}=\chi_{i=1}^{k} \llbracket Q_{i} \rrbracket_{\tau_{i}}^{\mathbf{D}}$. The algorithm uses a gate $w_{i}$ from Line 12, obtained from a recursive call to $\operatorname{DPLL}\left(Q_{i}, \tau_{i}, \mathbf{D}, \prec\right)$ where the number of variables not assigned by $\tau_{i}$ in $Q_{i}$ is less than the number of variables unassigned by $\tau$ in $Q$. Hence, by induction, $w_{i}$ computes $\llbracket Q_{i} \rrbracket_{\tau_{i}}^{\mathbf{D}}$ and since $v_{d}$ is a $\times$-gate connected to each $w_{i}$, we indeed have $\operatorname{rel}\left(v_{d}\right)=$ X $_{i=1}^{k} \llbracket Q_{i} \rrbracket_{\tau_{i}}^{\mathbf{D}}$.

The worst case complexity of DPLL may be high when no cache hit occur which would result in at least $|\mathbf{D}|^{f c n(Q)}$ recursive calls by Theorem 2. However, when $\prec$ has good properties wrt $Q$, we can prove better bounds. Section 4.2 proposes a way of measuring the complexity of an elimination order wrt $Q$ and Section 4.3 gives upper bounds on the complexity of DPLL depending on this measure.

### 4.2 Hyperorder width

In this section, we introduce the notion of width that is relevant to pinpoint the complexity of the DPLL procedure previously described on signed join queries. Our decomposition is not based on hypertree decompositions but rather on elimination orders. We introduce several notions of widths for elimination orders on (signed) hypergraphs that will be used to establish the following complexity bounds:

Order based widths $\operatorname{(how}(\cdot)$, fhow $(\cdot)$ ). A hypergraph $H=(V, E)$ and an order $\prec$ such that $V=\left\{v_{1}, \ldots, v_{n}\right\}$ with $v_{1} \prec \cdots \prec v_{n}$ induces a series of hypergraphs defined as $H_{1}^{\prec}, \ldots, H_{n+1}^{\prec}$ as $H_{1}^{\prec}=H$ and $H_{i+1}^{\prec}=H_{i}^{\prec} / v_{i}$. The hyperorder width how $(H, \prec)$ of $\prec w r t H$ is defined as $\max _{i \leqslant n} \operatorname{cn}\left(N_{H_{i}^{\prec}}\left(v_{i}\right), E\right)$. The hyperorder width how $(H)$ of $H$ is defined as the best possible width using any elimination order, that is, how $(H)=\min _{\prec}$ how $(H, \prec)$. We similarly define the fractional hyperorder width fhow $(H, \prec)$ of $\prec w r t H$ as $\max _{i \leqslant n} f c n\left(N_{H_{i}^{\prec}}\left(v_{i}\right), E\right)$ and the fractional hyperorder width fhow $(H)$ of $H$ as fhow $(H)=\min _{\prec}$ fhow $(H, \prec)$.

It has already been observed in many work ([23, Appendix C] or [16, 17, 24]) that how $(H)$ and fhow $(H)$ are respectively equal to the generalized hypertree width and the fractional hypertree width of $H$ and that there is a natural correspondence between a tree decomposition and an elimination order having the same width. However, to be able to express our tractability results as function of the order, it is more practical to define the width of orders instead of hypertree decompositions. In [8, Definition 9], fhow $(H, \prec)$ is called the incompatiblity number, though it is not formally defined on hypergraphs but directly on
conjunctive queries. The case $k=1$, which corresponds to the $\alpha$-acyclicity of the underlying hypergraph, has been also previously call an order without disruptive trio [12]. However, these notions are specifically used for the problem of direct access in conjunctive queries while the characterization of hypergraph measures in terms of elimination orders of hypergraphs predates by several years this terminology (see [6] for a survey). In this paper, we decided to have a terminology closer to the usual terminology for hypergraphs decompositions, where we replace the usual tree decompositions by order decompositions. It will be specifically useful for the hereditary order based widths.

Hereditary order based widths ( $\beta$-how $(\cdot), \beta$-fhow $(\cdot)$ ). One shortcoming of (fractional) hypertree width is that it is not hereditary. That is, the (fractional) hypertree width of a subhypergraph can be much bigger than the (fractional) hypertree width of the hypergraph itself. It makes it not well suited to discover tractable classes for signed join queries. Indeed, if a query $Q$ contains a negative atom $\neg R(\mathbf{x})$ and if $R^{\mathbf{D}}$ is empty in the database $\mathbf{D}$, then $\llbracket Q \rrbracket^{\mathbf{D}}$ is equal to $\llbracket Q^{\prime} \rrbracket^{\mathbf{D}}$, where $Q^{\prime}=Q \backslash\{\neg R(\mathbf{x})\}$. Hence if some aggregation problem for a fixed self-join free query $Q$ on an input database $\mathbf{D}$ can be solved in $O(\operatorname{poly}(|\mathbf{D}|))$ for any database $\mathbf{D}$, it has to be tractable for every $Q^{\prime}$ obtained by removing a subset of the negative atoms from $Q$. This motivates the following definitions: for a hypergraph $H=(V, E)$ and an order $\prec$ on $V$, the $\beta$-hyperorder width $\beta$-how $(H, \prec)$ of $\prec$ wrt to $H$ is defined as $\max _{H^{\prime} \subseteq H}$ how $\left(H^{\prime}, \prec\right)$. The $\beta$-hyperorder width $\beta$-how $(H)$ of $H$ is defined as the width of the best possible elimination order, that is, $\beta$-how $(H)=\min _{\prec} \beta$-how $(H, \prec)$. We define similarly the $\beta$-fractional hyperorder width of an order $\prec$ and of an hypergraph -$\beta$-fhow $(H, \prec)$ and $\beta$-fhow $(H)$ - by replacing how $(\cdot)$ by fhow $(\cdot)$ in the definitions.

Comparison with existing measures. The fact that fractional hypertree width is not hereditary has traditionnally been worked around by taking the largest width over every subhypergraph. In other words, the $\beta$-fractional hypertree width $\beta$-fhtw $(H)$ of $H$ is defined as $\beta$-fhtw $(H)=\max _{H^{\prime} \subseteq H} \mathrm{fhtw}\left(H^{\prime}\right)$. The $\beta$-hypertree width $\beta$-htw $(H)$ is defined similarly. If one plugs the ordered characterisation of fhtw $\left(H^{\prime}\right)$ in this definition, one can observe that $\beta$-fhtw $(H)=\max _{H^{\prime} \subseteq H} \min _{\prec}$ fhow $\left(H^{\prime}, \prec\right)$. Hence, the difference between $\beta$-fhtw $(H)$ and $\beta$-fhow $(H)$ boils down to inverting the min and the max in the definition. It directly gives that $\beta$ - $\operatorname{fhtw}(H) \leqslant \beta$-fhow $(H)$ and $\beta-\operatorname{htw}(H) \leqslant \beta$-how $(H)$ for every $H$. The main advantage of the $\beta$-fractional hyperorder width is that it comes with a natural notion of decomposition - the best elimination order $\prec$ - that can be used algorithmically. This is not given by the definition of $\beta-\operatorname{fhtw}(\cdot)$ and has yet to be found.

The only exception is the case where $\beta$-fhtw $(H)=1$, known as $\beta$-acyclicity, where an order-based characterisation is known and has been used to show the tractability of many problems such as SAT [30], \#SAT or \#CQ for $\beta$-acyclic instances [11, 7]. The elimination order is based on the notion of nest points. In a hypergraph $H=(V, E)$, a nest point is a vertex $v \in V$ such that $E(v)$ is ordered by inclusion, that is, $E(v)=\left\{e_{1}, \ldots, e_{p}\right\}$ with $e_{1} \subseteq \cdots \subseteq e_{p}$. A $\beta$-elimination order $\left(v_{1}, \ldots, v_{n}\right)$ for $H$ is an ordering of $V$ such that for every $i \leqslant n, v_{i}$ is a nest point of $H \backslash\left\{v_{1}, \ldots, v_{i-1}\right\}$. A closer inspection of the definition of $\beta$-elimination order $\prec$ shows that $\beta$-fhow $(H, \prec)=\beta$-how $(H, \prec)=1$, showing that iy corresponds to $\beta$-acyclicity. We can actually prove a more general result: the notion of $\beta$-acyclicity has been recently generalised by Lanzinger in [25] using a notion called nest sets. A set of vertices $S \subseteq V$ is a nest set of $H$ if $\{e \backslash S \mid e \in E, e \cap S \neq \emptyset\}$ is ordered by inclusion. A nest set elimination order is a list $\Pi=\left(S_{1}, \ldots, S_{p}\right)$ such that:

- $\bigcup_{i=1}^{p} S_{i}=1$,
- $S_{i} \cap S_{j}=\emptyset$ and
- $S_{i}$ is a nest set of $H \backslash \bigcup_{j<i} S_{j}$.

The width of a nest set elimination is $\operatorname{nsw}(H, \Pi)=\max _{i}\left|S_{i}\right|$ and the nest set width $\mathrm{nsw}(H)$ of $H$ is defined to be the smallest possible width of a nest set elimination order of $H$. It turns out that our notion of width generalises the notion of nest set width, that is, we have $\beta$-how $(H) \leqslant \operatorname{nsw}(H)$. More particularly, any order $\prec$ obtained from a nest set elimination order $\Pi=\left(S_{1}, \ldots, S_{p}\right)$ by ordering each $S_{i}$ arbitrarely verifies nsw $(H, \Pi) \geqslant \beta$-how $(H, \prec)$.

We summarise and give formal proofs of the above discussion in the following theorem:

- Theorem 12. For every hypergraph $H=(V, E)$, we have: $\beta$-htw $(H) \leqslant \beta$-how $(H) \leqslant$ $\operatorname{nsw}(H)$. In particular, if $H$ is $\beta$-acyclic then $\beta$-how $(H)=1$.

The proof mainly follows from the following lemma:

- Lemma 13. Let $H=(V, E)$ be a hypergraph and $S$ be a nest set of $H$ of size $k$. We let $f$ to be the maximal element (for inclusion) of $\{e \backslash S \mid e \in E, e \cap S \neq \emptyset\}$, which exists by definition and $\left(s_{1}, \ldots, s_{k}\right)$ an ordering of $S$. For every $i \leqslant k$ and $e$ an edge of $H / s_{1} / \ldots / s_{i}$, then either $e \cap S \neq \emptyset$ and $e \subseteq f \cup S$ or $e \cap S=\emptyset$ and $e$ is an edge of $H \backslash\left\{s_{1}, \ldots, s_{i}\right\}$.

Proof. We prove this lemma by induction on $i$. For $i=0$, it is clear since if $e \cap S \neq \emptyset$, then $e \backslash S \subseteq f$ by definition of $f$. Hence $e \subseteq f \cup S$. Now, assuming the hypothesis holds for some $i$, let $H_{i}=H / s_{1} / \ldots / s_{i}$ and $H_{i+1}=H_{i} / s_{i+1}$. By definition, the edges of $H_{i+1}$ are the edges of $H_{i}$ without the vertex $s_{i+1}$ and with the additional edge $N_{H_{i}}^{*}\left(s_{i+1}\right)$. Let $e$ be an edge of $H_{i+1}$ that is not $N_{H_{i}}^{*}\left(s_{i+1}\right)$. Either $e$ was in $H_{i}$ in which case the induction hypothesis still holds. Or $e=e^{\prime} \backslash\left\{s_{i+1}\right\}$ for some edge $e^{\prime}$ of $H_{i}$. By induction, since $e^{\prime} \cap S \neq \emptyset, e^{\prime} \subseteq f \cup S$. Hence $e=e^{\prime} \backslash\left\{s_{i+1}\right\} \subseteq f \cup S$ and the induction hypothesis follows. Now assume $e=N_{H_{i}}^{*}\left(s_{i+1}\right)$. By induction, every edge of $H_{i}$ that contains $s_{i+1}$ is contained in $f \cup S$ hence $N_{H_{i}}^{*}\left(s_{i+1}\right) \subseteq f \cup S$ and the induction follows.

Proof of Theorem 12. The inequality $\beta-\operatorname{htw}(H) \leqslant \beta-\operatorname{how}(H)$ is straightforward using:

- $\beta-\operatorname{htw}(H)=\max _{H^{\prime} \subseteq H} \min _{\prec} \operatorname{how}\left(H^{\prime}, \prec\right)$
- $\beta$-how $(H)=\min _{\prec} \max _{H^{\prime} \subseteq H} \operatorname{how}\left(H^{\prime}, \prec\right)$

Indeed, let $\prec_{0}$ be an elimination order that is minimal for $\beta$-how $(H, \prec)$. By definition, for $H^{\prime} \subseteq H, \operatorname{how}\left(H^{\prime}, \prec_{0}\right) \geqslant \min _{\prec} \operatorname{how}\left(H^{\prime}, \prec\right)$. Hence

$$
\beta \text {-how }(H)=\max _{H^{\prime} \subseteq H} \operatorname{how}\left(H^{\prime}, \prec_{0}\right) \geqslant \max _{H^{\prime} \subseteq H} \min _{\prec} \operatorname{how}\left(H^{\prime}, \prec\right)=\beta \text {-htw }(H) \text {. }
$$

We now prove $\beta$-how $(H) \leqslant \operatorname{nsw}(H)$. Let $k=\operatorname{nsw}(H)$ and $\Pi=\left(S_{1}, \ldots, S_{p}\right)$ a nest set elimination of $H$ of width $k$, that is, for every $i,\left|S_{i}\right| \leqslant k$. Let $\prec$ be an order on $V=\left(v_{1}, \ldots, v_{n}\right)$ with $v_{1} \prec \cdots \prec v_{n}$, obtained from $\Pi$ by ordering each $S_{i}$ arbitrarely, that is, if $x \in S_{i}$ and $y \in S_{j}$ with $i<j$, we require that $x \prec y$. We claim that $\beta$-how $(H, \prec) \leqslant \operatorname{nsw}(H, \Pi)$. First of all, we observe that if $\left(S_{1}, \ldots, S_{p}\right)$ is a nest set elimination order for $H$, then it is also a nest set elimination order for every $H^{\prime} \subseteq H$, which is formally proven in [25, Lemma 4$]^{4}$. Consequently, it is enough to prove that how $(H, \prec) \leqslant k$. This follows from Lemma 13. Indeed, let $\left(v_{1}, \ldots, v_{t}\right)$ be the prefix of $\left(v_{1}, \ldots, v_{n}\right)$ such that $S_{1}=\left\{v_{1}, \ldots, v_{t}\right\}$. By Lemma 13, when $v_{i+1}$ is removed from $H_{i}^{\prec}=H / v_{1} / \ldots / v_{i}$, then $N_{i+1}=N_{H_{i}}\left(v_{i+1}\right)$ is included in $f \cup S_{1}$ since $N_{i+1} \cap S_{1} \neq \emptyset$ (both contain $v_{i+1}$ ). Hence $N_{i+1}$ is covered by at most $t$ edges: $f$ - which

[^3]contains at least one element of $S_{1}$ - plus at most one edge for each remaining element of $S_{1}$. Hence, up to the removing of $v_{t}$, the hyperorder width of $\prec$ is at most $t \leqslant k$. Now, when removing $\left(v_{1}, \ldots, v_{t}\right)$ from $H$, by Lemma 13 again, $H_{t}^{\prec}=H \backslash\left\{v_{1}, \ldots, v_{t}\right\}$ since no edge of $H_{t}^{\prec}$ has a non-empty intersection with $S_{1}$. It follows that $S_{2}$ is a nest set of $H_{t}^{\prec}$ and we can remove it in a similar way to $S_{1}$ and so on. Hence $\beta-\operatorname{how}(H, \prec) \leqslant k=\operatorname{nsw}(H, \Pi)$ which settles the inequality stated in the theorem.

It directly implies that if $H$ is $\beta$-acyclic then $\beta$-how $(H)=1$ since if $H$ is $\beta$-acyclic, then $\operatorname{nsw}(H)=1$ and $\beta$-how $(H) \leqslant \operatorname{nsw}(H)=1$ by the previously established bound.

The goal of this paper is not to give a thorough analysis of $\beta$-fractional hyperorder width so we leave for future research several questions related to it. We observe that we do not know the exact complexity of computing or approximating the $\beta$-fractional hyperorder width of an input hypergraph $H$. It is very likely hard to compute exactly since it is not too difficult to observe that when $H$ is a graph, $\beta$-fhow $(H)$ is sandwiched between the half of the treewidth of $H$ and the treewidth of $H$ itself and it is known that treewidth is NP-hard to compute [4]. We also leave open many questions concerning how $\beta$-fractional hyperorder width compares with other widths such as (incidence) treewidth, (incidence) cliquewidth or MIM-width. For these measures of width, \#SAT, a problem close to computing the number of answers in signed join queries, is known to be tractable (see [11] for a survey). We leave open the most fundamental question of comparing the respective powers of $\beta$-fhtw $(\cdot)$ and $\beta$-fhow $(\cdot)$ :

- Open Question 14. Does there exist a family $\left(H_{n}\right)_{n \in \mathbb{N}}$ of hypergraphs such that $\left(\beta-\operatorname{fhtw}\left(H_{n}\right)\right)_{n \in \mathbb{N}}$ is bounded by a constant $k \in \mathbb{N}$ while $\left(\beta \text {-fhow }\left(H_{n}\right)\right)_{n \in \mathbb{N}}$ is unbounded?

One may wonder why the definition of $\beta$-hyperorder width has not appeared earlier in the literature, as it just boils down to swapping a min and a max in the definition of $\beta$-hypertree width while enabling an easier algorithmic treatment. We argue that the expression of hypertree width in terms of elimination orders - which is not the widespread way of working with this width in previous literature - is necessary to make this definition interesting. Indeed, if one swaps the min and max in the traditional definition of $\beta$-hypertree width, we get the following definition: $\beta-\mathrm{htw}^{\prime}(H, T)=\min _{T} \max _{H^{\prime} \subseteq H} \mathrm{htw}\left(H^{\prime}, T\right)$ where $T$ runs over every tree decomposition of $H$ and hence is valid for every $H^{\prime} \subseteq H$ since, as every edge of $H$ is covered by $T$, so are the edges of $H^{\prime}$. This definition, while being obtained in the same way as $\beta$-how $(\cdot)$, is not really interesting however because it does not generalise the notion of $\beta$-acyclicity:

- Lemma 15. There exists a family of $\beta$-acyclic hypergraphs $\left(H_{n}\right)$ such that for every $n \in \mathbb{N}$, $\beta-$ htw $^{\prime}\left(H_{n}\right)=n$.

Proof. Consider the hypergraph $H_{n}$ whose vertex set is [ $n$ ] and edges are $\{0, i\}$ for $i>0$ and $[n]$. That is $H_{n}$ is a star centered in 0 and has an edge containing every vertex. $H_{n}$ is clearly $\beta$-acyclic (any elimination order that ends with 0 is a $\beta$-elimination order) but we claim that $\beta$-htw ${ }^{\prime}\left(H_{n}\right)=n$. Indeed, let $T$ be a tree decomposition for $H_{n}$. By definition, it contains a bag that contains [n]. Now consider the subhypergraph $H_{n}^{\prime}$ of $H_{n}$ obtained by removing the edge $[n]$. The hypertree width of $T$ wrt $H_{n}^{\prime}$ is $n$ since one needs the edge $\{i, 0\}$ to cover vertex $i$ in the bag [ $n$ ] since $i$ appears only in this edge.

Signed hyperorder width. In the case of signed join queries, one can deal with positive and negative atoms differently, which is not reflected by the definition of $\beta$-fhow $(\cdot)$. We generalise these widths to signed hypergraphs by taking subhypergraphs only on the negative
part, generalising a notion of acyclicity introduced by Brault-Baron in [5] that mixes $\beta$ and $\alpha$-acyclicities for signed hypergraphs. Let $H=\left(V, E_{+}, E_{-}\right)$be a signed hypergraph. Given an order $\prec$ on $V$, the signed hyperorder width $\operatorname{show}(H, \prec)$ of $\prec$ wrt $H$ is defined as $\operatorname{show}(H, \prec)=\max _{E^{\prime} \subseteq E_{-}}$how $\left(\left(V, E_{+} \cup E^{\prime}\right), \prec\right)$. The signed hyperorder width show $(H)$ of $H$ is defined as $\operatorname{show}(H)=\min _{\prec}$ show $((H, \prec)$. Fractional version of these widths could easily be defined but will not be needed in this paper. The following directly follows from the definition:

- Theorem 16. For every signed hypergraph $H=\left(V, E_{+}, E_{-}\right)$and elimination order $\prec$ of $V$ :
- If $E_{+}=\emptyset$ then $\operatorname{show}(H, \prec)=\beta$-how $(H, \prec)$. In particular, $\operatorname{show}(H)=\beta$-how $(H)$.
- If $E_{-}=\emptyset$ then $\operatorname{show}(H, \prec)=\operatorname{how}(H, \prec)$. In particular, $\operatorname{show}(H)=\operatorname{how}(H)$.


### 4.3 Complexity of exhaustive DPLL

The complexity of DPLL on a conjunctive query $Q$ and order $\prec$ can be bounded in terms of the hyperorder width of $H(Q)$ wrt $\prec$ :

- Theorem 17. Let $Q$ be a signed join query, $\mathbf{D}$ a database over domain $D$ and $\prec$ an order on $\operatorname{var}(Q)$. Then $\operatorname{DPLL}(Q,\langle \rangle, \mathbf{D}, \prec)$ produces $a \succ$-ordered $\{\times$, dec $\}$-circuit $C$ of size $O\left(\operatorname{poly}_{k}(|Q|)|\mathbf{D}|^{k+1}\right)$ such that $\operatorname{rel}(C)=\llbracket Q \rrbracket^{\mathbf{D}}$ and:
- $k=$ fhow $(H(Q), \prec)$ if $Q$ is positive,
- $k=\operatorname{show}(H(Q), \prec)$ if $Q$ otherwise.

Moreover, the runtime of $\operatorname{DPLL}(Q,\langle \rangle, \mathbf{D}, \prec)$ is at most $\tilde{O}\left(\operatorname{poly}_{k}(|Q|)|\mathbf{D}|^{k+1}\right)$.
This is dedicated to proving Theorem 17. In this section, we fix a signed join query $Q$ that has exactly one $\left\rangle\right.$-component ${ }^{5}$, a database $\mathbf{D}$ and an order $\prec$ on $\operatorname{var}(Q)=\left\{x_{1}, \ldots, x_{n}\right\}$ where $x_{1} \prec \cdots \prec x_{n}$. We let $D$ be the domain of $\mathbf{D}, n$ be the number of variables of $Q$ and $m$ be the number of atoms of $Q$. To ease notation, we will write $X$ instead of $\operatorname{var}(Q)$. For $i \leqslant n$, we denote $\left\{x_{1}, \ldots, x_{i}\right\}$ by $X_{\preceq i}$. Similarly, $X_{\prec i}=X_{\preceq i} \backslash\left\{x_{i}\right\}, X_{\succ i}=\operatorname{var}(Q) \backslash X_{\preceq i}$ and $X_{\succeq i}=\operatorname{var}(Q) \backslash X_{\prec i}$. Finally, we let $\mathbf{R}$ be the set of $(K, \sigma)$ such that $\operatorname{DPLL}(Q,\langle \rangle, \mathbf{D}, \prec)$ makes at least one recursive call to $\operatorname{DPLL}(K, \sigma, \mathbf{D}, \prec)$. We start by bounding the size of the circuit and the runtime in terms of the number of recursive calls:

- Lemma 18. $\operatorname{DPLL}(Q,\langle \rangle, \mathbf{D}, \prec)$ produces a circuit of size at most $O(|\mathbf{R}| \cdot|D| \cdot \operatorname{poly}(|Q|))$ in time $\tilde{O}(|\mathbf{R}| \cdot|D| \cdot \operatorname{poly}(|Q|))$.

Proof. Given $(K, \sigma) \in \mathbf{R}$, we associate to it every edges created in the circuit by the first recursive call with these parameters. There are at most $m+1$ such edges for each $d \in D$. Indeed, for a value $d \in D$, there are at most $m+1 \sigma^{\prime}$-connected components for $\sigma^{\prime}=\sigma \cup[x \leftarrow d]$ hence the first recursive call creates at most $m$ edges between $v_{d}$ and $w_{i}$ and one edge between $v$ and $v_{d}$. Observe that any other recursive call with these parameters will not add any extra edges in the circuit since it will result in a cache hit. Hence, the size of the circuit produced in the end is at most $|\mathbf{R}| \cdot|D| \cdot(m+1)=O(|\mathbf{R}| \cdot|D| \cdot \operatorname{poly}(Q))$.

Moreover, each operation in Algorithm 1 can be done in time polynomial in $|Q|$ if one stores the relation using the correct datastructure. Indeed, if one sees a relation $R$ on variables $x_{1} \prec \cdots \prec x_{n}$ as a set of words on an alphabet $D$ whose first letter is $x_{n}$ and last is $x_{1}$, one can store it as a trie of size $\tilde{O}(|R|)$ and project $R$ on $x_{1}, \ldots, x_{n-1}$ in $\tilde{O}(1)$. Hence, we can

[^4]test for inconsistency in time $\tilde{O}(|Q|)$ after having fixed the highest variables in $Q$ to a value $d \in D$ by going over every atom of $Q$. Moreover computing the $\sigma^{\prime}$-connected component can be done in polynomial time in $|Q|$ since it boils down to finding the connected components of a graph having at most $m$ nodes. Such a graph can be constructed in polynomial time in $|Q|$ by testing intersections of variables in atoms. Finally, from the previous discussion, a recursive call to Algorithm 1 creates at most $m+1$ edges for each $d \in D$. Moreover, reading and writing values in the cache can be done in time $\tilde{O}($ poly $(|Q|)$ by using a hash table. We pay the cost of reading the cache in a recursive call directly on Line 12. Hence the time for each $(K, \sigma) \in \mathbf{R}$ is $\tilde{O}(|D| \cdot \operatorname{poly}(|Q|))$, hence a total time of $\tilde{O}(|\mathbf{R}| \cdot|D| \cdot \operatorname{poly}(|Q|))$.

It remains to bound the size of $\mathbf{R}$. Lemma 19 characterises the structure of the elements of $\mathbf{R}$ and Lemma 20 shows connections with with the structure of the hypergraph of $Q$. We need a few notations. Let $Q^{\prime} \subseteq Q$ be a subquery of $Q$ and $x, y$ two variables of $Q^{\prime}$ such that $y \prec x$. An $x$-path to $y$ in $Q^{\prime}$ is a list $x_{0}, a_{0}, \ldots, x_{p}$ where $a_{i} \in \operatorname{atoms}\left(Q^{\prime}\right)$ is an atom of $Q^{\prime}$ on variables $\mathbf{x}_{\mathbf{i}}, x_{i}$ is a variable of $\mathbf{x}_{\mathbf{i}}, x_{0}=x, x_{p}=y$ and $x_{i} \preceq x$ for every $i \leqslant p$. Intuitively, it maps to a path in the hypergraph of $Q^{\prime}$ that starts from $x$ and is only allowed to use vertices smaller than $x$. The $x$-component of $Q^{\prime}$ is the set of atoms $a$ of $Q^{\prime}$ such that there exists an $x$-path to a variable $y$ of $a$ in $Q^{\prime}$.

It turns out that the recursive calls performed by DPLL are $x$-components of some $Q^{\prime} \subseteq Q$ and $x \in X$ where $Q^{\prime}$ is obtained from $Q$ by removing negative atoms. Intuitively, these removed atoms are the ones that cannot be satisfied anymore by the current assignment of variables.

- Lemma 19. Let $(K, \sigma) \in \mathbf{R}$ and let $x$ be the biggest variable of $K$ not assigned by $\sigma$. There exists $\tau \supset \sigma$, a partial assignment of $X_{\succ x}$ such that $K$ is the $x$-component of $Q \Downarrow \tau$.

Proof. The proof is by induction on the order of recursive calls. We start by the first call, $(Q,\langle \rangle)$. Since $Q$ has one $\left\rangle\right.$-component, the $x_{n}$-component of $Q$ is $Q$ itself. Moreover, since $Q \Downarrow\left\rangle=Q\right.$, we have that $Q$ is the $x_{n}$-component of $Q \Downarrow\rangle$. Now let $(K, \sigma) \in \mathbf{R}$. By definition, the recursive call is made during the execution of an other recursive call with parameters $\left(K^{\prime}, \sigma^{\prime}\right)$. Assume by induction that for $\left(K^{\prime}, \sigma^{\prime}\right)$, the statement of Lemma 19 holds. In other words, let $x^{\prime}$ be the biggest variable of $K^{\prime}$. Then $K^{\prime}$ is the $x^{\prime}$-component of $Q \Downarrow \tau^{\prime}$ for some partial assignment $\tau^{\prime} \supset \sigma^{\prime}$ of $X_{\succ x^{\prime}}$. Moreover, by definition of DPLL, $\sigma=\left.\sigma^{\prime \prime}\right|_{\operatorname{var}(K)}$ where $\sigma^{\prime \prime}=\sigma \cup\left[x^{\prime} \leftarrow d\right]$ for some $d \in D$ and $K$ is a $\sigma^{\prime \prime}$-component of $K^{\prime} \Downarrow \sigma^{\prime \prime}$.

We claim that $K$ is the $x$-component of $Q \Downarrow \tau$, where $\tau=\tau^{\prime} \cup\left[x^{\prime} \leftarrow d\right]$. First observe that every atom $a$ of $K$ are in $Q \Downarrow \tau$. Indeed, if $a$ is positive, then $a$ is also in $Q \Downarrow \tau$ by definition. Now if $a=\neg R(\mathbf{x})$ is negative, we claim that $a$ is not inconsistent with $\tau$. Indeed, by induction, $a$ is in $Q \Downarrow \tau^{\prime}$, hence it is not inconsistent with $\tau^{\prime}$. Now since $a$ is also in $K$ and $K$ is a subset of $K^{\prime} \Downarrow \sigma^{\prime \prime}$ and $\sigma^{\prime \prime}\left(x^{\prime}\right)=d$, we know that $a$ is not inconsistent with $\tau^{\prime} \cup[x \leftarrow d]$ which is $\tau$ by definition. Hence $a$ is in $Q \Downarrow \tau$

Now let $a$ be an atom of $K$. Since $x$ is a variable of $K$, there is an atom $a_{0}$ in $K$ that contains $x$. Moreover, $K$ is a $\sigma^{\prime \prime}$-connected component of $K^{\prime} \Downarrow \sigma^{\prime \prime}$. Hence, by definition, we have a path in $K$ from $x$ (starting with atom $a_{0}$ ) to some variable $y$ in $a$ that do not use any variable assigned by $\sigma^{\prime \prime}$, which is equivalent to say that it does not use any variable assign by $\sigma$ since $\sigma=\left.\sigma^{\prime \prime}\right|_{\operatorname{var}(K)}$ by definition. Since $x$ is the biggest variable of $K$ that is not assigned $\sigma$ by definition, the path from $a_{0}$ to $a$ uses only variables smaller than $x$. In other words, there is an $x$-path to $y$ in $K$, that is, every atom $a$ of $K$ are in the $x$-component of $Q \Downarrow \tau$.

Now let $a$ be an atom that is in the $x$-component of $Q \Downarrow \tau$. We first show that $a$ in $K^{\prime}$. First of all, observe that $a$ is in $Q \Downarrow \tau^{\prime}$ since $Q \Downarrow \tau \subseteq Q \Downarrow \tau^{\prime}$. Now, by definition, there is a path from $x$ to some variable $y$ of $a$ in $Q \Downarrow \tau$ that uses only variables smaller than $x$. Recall
that $a_{0}$ is an atom of $K$ containing variable $x$. Since $K \subseteq K^{\prime}, a_{0}$ is also an atom of $K^{\prime}$. Hence there is a path from atom $a_{0}$ to atom $a$ using only variables smaller than $x$, hence also smaller than $x^{\prime}$. In other words, $a$ is in the $x^{\prime}$-component of $Q \Downarrow \tau^{\prime}$, hence in $K^{\prime}$ by definition. Now, since $a$ is in $Q \Downarrow \tau$, it is also in $\sigma^{\prime \prime} \Downarrow K^{\prime}$. Hence, it is in the $\sigma^{\prime \prime}$-component of $\sigma^{\prime \prime} \Downarrow K^{\prime}$ that contains $x$, that is, it is in $K$, which concludes the proof.

The following lemma establishes a connection between $x$-components and the structure of the underlying hypergraph. In essence, it allows us to bound the number of atoms needed to cover $X_{\succ x}$ in an $x$-component using the signed hyperorder width.

- Lemma 20. Let $Q$ be a signed join query on variables $X=\left\{x_{1}, \ldots, x_{n}\right\}, x_{i}$ a variable of $Q$ and $K_{i}$ its $x_{i}$-component. We let $H$ be the hypergraph of $Q, H_{1}=H$ and $H_{j+1}=H_{j} / x_{j}$. We have $N_{x_{i}}\left(H_{i}\right)=\operatorname{var}\left(K_{i}\right) \cap X_{\succeq x_{i}}$.

Proof. The proof is by induction on $i$. We start by proving the equality for $i=1$. Since there are no variable of $K_{1}$ smaller than $x_{1}$, it is clear that $K_{1}=\left\{a \in \operatorname{atoms}(Q) \mid x_{1} \in \operatorname{var}(a)\right\}$. Hence $\operatorname{var}\left(K_{1}\right) \cap X_{\succeq x_{1}}=V\left(K_{1}\right)$. Moreover, $N_{H}\left(x_{1}\right)$ is exactly the set of variables of atoms of $Q$ containing $x_{1}$ since there is on hyperedge in $H$ per atom of $Q$. Hence $V\left(K_{1}\right) \cap X_{\succeq x_{1}}=$ $N_{H}\left(x_{1}\right)=N_{H_{1}}\left(v_{1}\right)$, the last equality following by definition: $H_{1}=H$.

Now assume that the equality has been established up to $x_{i-1}$. We start by proving that $V\left(K_{i}\right) \cap X_{\succeq x_{i}} \subseteq N_{H_{i}}\left(x_{i}\right)$. Let $w \in V\left(K_{i}\right) \cap X_{\succeq x_{i}}$. Either $w \in N_{H}\left(x_{i}\right)$ and then it is clear that $w \in N_{H_{i}}\left(x_{i}\right)$. Otherwise, there is, by definition, a $x_{i}$-path from $x_{i}$ to an atom $a$ of $K_{i}$ containing $w$ of length greater than 1 . Let $x_{j}$ be the biggest node on this path that is not neither $x_{i}$ nor $w$. By definition of a $x_{i}$-path, $j<i$. Moreover, the first part of this path from $x_{i}$ to $x_{j}$ is an $x_{j}$-path and similarly, the second part from $x_{j}$ to $w$ is a $x_{j}$-path. By induction, we thus have $w \in N_{H_{j}}\left(x_{j}\right)$ and $x_{j} \in N_{H_{j}}\left(x_{j}\right)$. Hence $w$ and $x_{i}$ are neighbours in $H_{j+1}$ since the edge $N_{H_{j}}\left(x_{j}\right) \backslash\left\{x_{j}\right\}$ has been added in $H_{j+1}$. In particular, it means that $w$ and $x_{i}$ are neighbours in $H_{i}$ since $i \geqslant j+1$, hence $w \in N_{H_{i}}\left(x_{i}\right)$.

Now let $w \in N_{H_{i}}\left(v_{i}\right)$. By definition, $w \in X_{\succeq x_{i}}$ since $x_{1}, \ldots, x_{i-1}$ have been removed in $H_{i}$. It remains to prove that $w$ is in an atom $a$ such that there is $x_{i}$-path to $a$. If $x_{i}$ and $w$ are neighbours in $H$ then it means they appears together in an atom of $Q$ and it is clear that $w \in \operatorname{var}\left(K_{i}\right)$. Otherwise, let $j$ be the smallest value for which $w \in N_{H_{j}}\left(x_{i}\right)$ which exists since $w \in N_{H_{i}}\left(x_{i}\right)$ and $j>1$ since $x_{i}$ and $w$ are not neighbours in $H=H_{1}$. The minimality of $j$ implies that $x_{i}$ and $w$ are not neighbours in $H_{j-1}$. Since the only edge added in $H_{j}$ is $N_{H_{j-1}}\left(x_{j-1}\right) \backslash\left\{x_{j-1}\right\}$, it means that both $x_{i}$ and $w$ are neighbours of $x_{j-1}$ in $H_{j-1}$, that is, $x_{i} \in N_{H_{j-1}}\left(x_{j-1}\right)$ and $w \in N_{H_{j-1}}\left(x_{j-1}\right)$. By induction, both $x_{i}$ and $w$ are variables of $K_{j-1}$. In other words, there exists a $x_{j-1}$-path to an atom $a$ containing $x_{i}$ and an $x_{j-1}$-path to an atom $a^{\prime}$ containing $w w$. By composing both paths, it gives a $x_{j-1}$-path - which is itself a $x_{i}$-path - from $x_{i}$ to $w$. Hence $w \in \operatorname{var}\left(K_{i}\right)$.

We are now ready to prove the upperbound on $|\mathbf{R}|$ depending on the width of $\prec$.

- Lemma 21. Let $m$ be the number of atoms of $Q$ and $n$ the number of variables. We have:
- if $Q$ is a positive join query, $|\mathbf{R}| \leqslant n|\mathbf{D}|^{k}$ where $k=$ fhow $(H(Q), \prec)$.
- otherwise $|\mathbf{R}| \leqslant n m^{k+1}|\mathbf{D}|^{k}$ where $k=\operatorname{show}(H(Q), \prec)$.

Proof. We start with the case where $Q$ is a positive join query. Let $(K, \sigma) \in \mathbf{R}$. In this case, we know by Lemma 19 that $K$ is the $x_{i}$-component of $Q \Downarrow \tau$ for some $\tau \supset \sigma$. Now, since $Q$ does not have negative atoms, $Q=Q \Downarrow \tau$ since $Q \Downarrow \tau$ is obtained from $Q$ by removing negative atoms only. In other words, $K$ is the $x_{i}$-component of $Q$ and $\sigma$ assigns the variables of $K$ that are greater than $x_{i}$. We also know that $\sigma$ is not inconsistent with the atoms of
$Q$, otherwise, DPLL would return $\perp$. Hence, $\sigma$ satisfies every atom of $K$ when projected on $X_{\succ x_{i}}$. By Lemma 20, $\operatorname{var}(K) \cap X_{\succ x_{i}}=N_{x_{i}}\left(H_{i}\right)$ where $H_{i}$ is defined as in Lemma 20. Hence, by definition, there exits a fractional cover of $N_{H_{i}}\left(x_{i}\right)$ using the atoms of $Q$ with value at most $k=$ fhow $(H(Q), \prec)$. Hence, $\sigma$ can be seen as the projection on $\operatorname{var}(K) \cap X_{\succ x_{i}}$ of an answer of the join of the atoms involved in the fractional cover. By Theorem 2, this join query as at most $|\mathbf{D}|^{k}$ answers. Hence, there are at most $n|\mathbf{D}|^{k}$ possible elements in $\mathbf{R}$ : there are at most $n x_{i}$-component (one for each $i \leqslant n$ ), and at most $|d b|^{k}$ associated $\sigma$.

Now, the case of signed query is a bit more complicated. Again, for $(K, \sigma) \in \mathbf{R}$, we know that $K$ is the $x_{i}$-component of $Q \Downarrow \tau$ for some $\tau \supset \sigma$ and, as before, $\tau$ is compatible with every positive atom in $Q \Downarrow \tau$. Moreoever, if $\neg R(\mathbf{x})$ is an atom of $Q \Downarrow \tau$, then $\tau$ is compatible with $R(\mathbf{x})$, since otherwise $\neg R(\mathbf{x})$ would not be in $Q \Downarrow \tau$. Now, let $H^{\prime}$ be the hypergraph of $Q \Downarrow \tau$. By definition, it is a subhypergraph of $H(Q)$, where only negative edges have been removed. Hence, by Lemma $20, \operatorname{var}(K) \cap X_{\succ x_{i}}=N_{H_{i}^{\prime}}\left(x_{i}\right)$ is covered by at most $k=\operatorname{sfhow}\left(H^{\prime}\right)$ edges. Hence, $\sigma$, which corresponds to $\tau$ restricted to $\operatorname{var}(K) \cap X_{\succ x_{i}}$, can be seen as the projection of an answer of a positive join query having at most $k$ atoms. Indeed, even if an edge used to cover $\operatorname{var}(K) \cap X_{\succ x_{i}}$ is associated to a negative atom, we know that $\tau$ is compatible with the positive part of this atom. Hence, $(K, \sigma)$ can be obtained as follows: pick at most $k$ atoms of $Q$, join their positive parts and take $\tau$ a solution of this join projected of $X_{\succ x}$. Now $K$ is the $x$-component of $Q \Downarrow \tau$ and $\sigma=\left.\tau\right|_{\operatorname{var}(K)}$. Hence, there are at most $n$ choice of variable, $m^{k+1}$ choice of subset of atoms of size at most $k$ and each join has at most $|\mathbf{D}|^{k}$ answers, which amounts to $n m^{k+1}|\mathbf{D}|^{k}$ possible $(K, \sigma) \in \mathbf{R}$, hence $|\mathbf{R}| \leqslant n m^{k+1}|\mathbf{D}|^{k}$.

Now Theorem 17 is a direct corollary of Lemmas 18 and 21 . If $Q$ is not $\rangle$-connected, then the first recursive call of DPLL will simply break $Q$ into at most $O(m)$ connected component and recursively called itself on each now $\rangle$-components of $Q$.

One may wonder why we do not use fractional width when $Q$ contains negative atoms. The proof of Lemma 21 breaks in this case when we try to bound the number, for a given $x$, of $x$-component $K$ that can appear in recursive calls. In the proof of Lemma 21, we bound it by taking at subset of at most $k$ atoms of $Q$. To do it with fractional cover, one would need to consider every combination of atoms of $Q$ having fractional cover at most $k$ which we did not manage to bound by a polynomial in $Q$. We therefore leave this question open for future research but observe that it would give a complexity of at most $\tilde{O}\left(2^{m}|\mathbf{D}|^{k+1}\right)$ which is polynomial wrt data complexity.

Another improvement that could be made in Theorem 17 is to have a dependency of $|\mathbf{D}|^{k}$ instead of $|\mathbf{D}|^{k+1}$. The extra $|\mathbf{D}|$ comes from the for-loop on Line 6 that explores every element of the domain. One could improve the complexity here by exploring only the values $d \in D$ such that setting $x$ to $d$ does not make $Q$ inconsistent. One could use the Leapfrog join proposed in the Leapfrog Triejoin algorithm [34, Section 3.1 and 3.2] to explore these candidates and we believe it would shave the extra $|\mathbf{D}|$ factor. However, the complexity analysis is already complicated enough and we decided to leave this for future investigation.

## 5 Tractability results for queries

In this section, we connect the tractability result on direct access on ordered circuit of Section 3 with the algorithm presented in Section 4 to obtain tractability results concerning the complexity of direct access on signed join queries. We compare this results with previous work.


Figure 5 Landscape of hypergraph measures and known inclusions with tractability results for direct access on negative join queries (NJQ), direct access on positive join queries (PJQ) shown and \#SAT on CNF formulas. Here $n$ is the number of variables, $m$ the number of atoms, $\mathbf{D}$ the database, $D$ the domain and $k$ the width measure ( $k=1$ for $\alpha$ - and $\beta$-acyclicity). In the case of CNF formulas, $m$ stands for the number of clauses, the size of the database is at most $m$ and the domain is $\{0,1\}$. An arrow between two classes indicates inclusion.

- Theorem 22. Given a signed join query $Q$, an order $\prec$ on $\operatorname{var}(Q)$ and a database D on domain $D$, we can solve the direct access problem for $\prec_{\text {lex }}$ with precomputation $\tilde{O}\left(|\mathbf{D}|^{k+1} \operatorname{poly}_{k}(|Q|)\right)$ and access time $O(\operatorname{poly}(n) \cdot \operatorname{polylog}(|D|))$ where $n=|\operatorname{var}(Q)|$ and:
- if $Q$ does not contain any negative atom, then $k=\operatorname{fhtw}(H(Q), \succ)$,
- Otherwise $k=\operatorname{show}(H(Q), \succ)$.

Proof. It is a corollary of Theorems 7 and 17 . Given $Q$ and $\mathbf{D}$, we call $\operatorname{DPLL}(Q,\langle \rangle, \mathbf{D}, \succ)$ to construct a $\prec$-ordered circuit $C$ on domain $D$ and variables $X=\operatorname{var}(Q)$, computing $\llbracket Q \rrbracket^{\mathbf{D}}$. The circuit is of size $O\left(|\mathbf{D}|^{k+1}\right.$ poly $\left._{k}(|Q|)\right)$ and is computed in time $\tilde{O}\left(|\mathbf{D}|^{k+1}\right.$ poly $\left._{k}(|Q|)\right)$ with $k$ as given in the statement. Now, we execute the precomputation step described in Section 3.2 in time $O(|C| \operatorname{poly}(n) \cdot$ polylog $(|D|))=\tilde{O}\left(|\mathbf{D}|^{k+1}\right.$ poly $\left._{k}(|Q|)\right)$ to get a count-labelled circuit $C$ computing $\llbracket Q \rrbracket^{\mathbf{D}}$. This terminates the precomputation part which has indeed the desired complexity.

Now, to find the $i^{\text {th }}$ solution in $\llbracket Q \rrbracket^{\mathbf{D}}$, we simply find the $i^{\text {th }}$ solution of rel $(C)$ using the algorithm of Section 3.2. By Theorem 7, the access time is hence $O(\operatorname{poly}(n) \cdot \operatorname{polylog}(|D|))=$ $O($ poly $(n) \cdot$ polylog $(|D|))$.

Figure 5 summarizes our contributions for join queries with negations and summarizes how our contribution is located in the landscape of known tractability results. Even if our result applies to signed conjunctive query, we summarize our contribution only for negative join queries and positive join queries since it allows to compare hypergraph measures (where tractability of signed queries is stated using signed hypergraphs parameters). The two left-most columns of the figure are contributions of this paper (Theorem 22), the right-most column is known from [8] but can be recovered in our framework (see discussion below). The third and fourth column states the complexity of \#SAT and is discussed below. A complete presentation of the results stated in this figure can be found in [10, Chapter 2].

Negative join queries and \#SAT. Theorem 22 generalises many tractability results from the literature. First of all, our result can directly be applied to \#SAT, the problem of counting the number of satisfying assignment of a CNF formula. A CNF formula $F$ with $m$ clauses can directly be transformed into a negative join query $Q_{F}$ with $m$ atoms having the same hypergraph and into a database $\mathbf{D}_{F}$ on domain $\{0,1\}$ and of size at most $m$ such that $\llbracket Q_{F} \rrbracket^{\mathbf{D}_{F}}$ is the set of satisfying assignments of $F$. Indeed, a clause can be seen as the negation of a relation having exactly one tuple. For example, $x \vee y \vee \neg z$ can be seen as $\neg R(x, y, z)$ where $R$ contains the tuple ( $0,0,1$ ). Hence, Theorem 22 generalizes both [11] and [7] by providing a compilation algorithm for $\beta$-acyclic queries to any domain size and to the more general measure of $\beta$-hyperorder width. It also shows that not only counting is tractable but also the more general direct access problem.

Theorem 22 also generalises the results of [25] which shows the tractability of the evaluation of negative join queries with bounded nest set width. Since a negative join query with nest set width $k$ has $\beta$-hyperorder width at most $k$ by Theorem 12 , Theorem 22 implies that direct access is tractable for the class of queries with bounded nest set width. In particular, counting the number of answers is tractable for this class, a question left open in [25].

Direct access for positive conjunctive queries. Theorem 22 allows to recover the tractability of direct access for positive join queries with bounded fractional hypertree width proven in $[12,8]$. Indeed, given an order $\prec$ on the vertices of a hypergraph, [8] introduces the notion of incompatibility number of $\prec$ which corresponds exactly to its fractional hyperorder width. Hence Theorem 22 implies the same tractability results for positive join query as [8, Theorem 10]. The complexity bounds from this paper are however better than ours and proven optimal since the preprocessing is of the form $\operatorname{poly}_{k}(Q)|\mathbf{D}|^{k}$ where we have poly ${ }_{k}(Q)|\mathbf{D}|^{k+1}$. We nevertheless believe that with a more careful analysis of the implementation of Algorithm 1, we could match this upper bound although this is not the focus of this paper. Another strong point of [12] (and also [9, Theorem 39] which is the arXiv version of [8]) is that it handles conjunctive queries, that is, join queries with projection which is not covered by Theorem 22. We demonstrate the versatility of the circuit-based approach by showing how one can also handle quantifiers directly on the circuit.

- Theorem 23. Let $C$ be $a \prec$-order circuit on domain $D$, variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$ such that $x_{1} \prec \cdots \prec x_{n}$ and $j \leqslant n$. One can compute in time $O(|C| \cdot \operatorname{poly}(n) \cdot \operatorname{polylog}(|D|)) a$ circuit $C^{\prime}$ of size at most $|C|$ such that $\operatorname{rel}\left(C^{\prime}\right)=\left.\operatorname{rel}(C)\right|_{\left\{x_{1}, \ldots, x_{j}\right\}}$.

Proof. Let $v$ be a decision gate on variable $x_{k}$ with $k>j$. By definition, every decision-gate in the circuit rooted at $v$ tests a variable $y \in\left\{x_{k+1}, \ldots, x_{n}\right\}$. Hence rel $(v) \subseteq D^{Y}$ with $Y \subseteq$ $\left\{x_{k}, \ldots, x_{n}\right\}$. Moreover, by computing a count label of $C$ in time $O(|C| \cdot \operatorname{poly}(n) \cdot \operatorname{polylog}(|D|))$ as in Lemma 8, we can decide whether $\operatorname{rel}(v)$ is the empty relation in time $O(1)$ by simply checking whether $\operatorname{nrel}_{C}\left(v, d_{0}\right) \neq 0$ where $d_{0}$ is the largest element of $D$. We construct $C^{\prime}$ by replacing every decision-gate $v$ on a variable $x_{k}$ with $k>j$ by a constant gate $\top$ if rel $(v) \neq \emptyset$ and $\perp$ otherwise. We clearly have that $\left|C^{\prime}\right| \leqslant|C|$ and from what precedes, we can compute $C^{\prime}$ in $O(|C| \cdot \operatorname{poly}(n) \cdot \operatorname{polylog}(|D|))$. Moreover, it is straightforward to show by induction that every gate $v^{\prime}$ of $C^{\prime}$ which corresponds to a gate $v$ of $C$ computes rel $\left.(C)\right|_{\left\{x_{1}, \ldots, x_{j}\right\}}$, which concludes the proof.

Now we can use Theorem 23 to handle conjunctive querie by first using Theorem 17 on the underlying join query to obtain a $\prec$-circuit and then by projecting the variables directly in the circuit. This approach works only when the largest variables in the circuits are the quantified variables. It motivates the following definition: given a hypergraph $H=(V, E)$,
an elimination order $\left(v_{1}, \ldots, v_{n}\right)$ of $V$ is $S$-connex if and only if there exists $i$ such that $\left\{v_{i}, \ldots, v_{n}\right\}=S$. In other words, the elimination order starts by eliminating $V \backslash S$ and then proceeds to $S$. Given a conjunctive query $Q$ and an elimination order $\prec$ on $\operatorname{var}(Q)$, we say that the elimination is free-connex if it is a free $(Q)$-connex elimination order of $H(Q)$ where free $(Q)$ are the free variables of $Q^{6}$. We directly have the following:

- Theorem 24. Given a conjunctive query $Q(Y)$, a free-connex order $\succ$ on $\operatorname{var}(Q)$ and $a$ database $\mathbf{D}$ on domain $D$, we can solve the direct access problem for $\prec_{\text {lex }}$ with precomputation $\tilde{O}\left(|\mathbf{D}|^{k+1}\right.$ poly $\left._{k}(|Q|)\right)$ and access time $O(n \cdot \operatorname{polylog}(|D|))$ where $n=|\operatorname{var}(Q)|$ and:
- if $Q$ does not contain any negative atom, then $k=f h t w(H(Q), \succ)$,
- Otherwise $k=\operatorname{show}(H(Q), \succ)$.

Proof. By running $\operatorname{DPLL}(Q,\langle \rangle, \mathbf{D}, \succ)$, one obtains a $\prec$-ordered circuit computing $\llbracket Q \rrbracket^{\mathbf{D}}$. The size of the circuit is $O\left(|\mathbf{D}|^{k+1}\right.$ poly $\left._{k}(|Q|)\right)$ by Theorem 17. Now, $\succ$ is free-connex, that is, $\succ$ is of the form $z_{1} \succ \cdots \succ z_{n}$ and there exists $i$ such that $\left\{z_{i}, \ldots, z_{n}\right\}=$ free $(Q)$. Hence, with respect to the relation $\prec$, we have that $\operatorname{var}(Q) \backslash$ free $(Q)$ are maximal. Hence by Theorem 23, we can construct a $\prec$-circuit of size at most $O\left(|\mathbf{D}|^{k+1}\right.$ poly $\left._{k}(|Q|)\right)$ computing $\left.\llbracket Q \rrbracket^{\mathbf{D}}\right|_{Y}=\llbracket Q(Y) \rrbracket^{\mathbf{D}}$, which conclude the proof using Theorem 7 .

We observe that our notion of free-connex elimination order for $Q$ is akind to [9, Definition 38] with two differences: first, in [9], it is allowed to only specify a preorder on free $(Q)$ and the complexity of the algorithm is then stated with the best possible compatible ordering, which would be possible in our framework too. The second difference is that the order are presented in reverse, that is, in their definition, the order starts with free variables and ends with quantified variables. We decided to present free-connexity of elimination orders this way to make this notion corresponds to the existing notion of free-connexity using tree decomposition. Now, Theorem 24 constructs a direct access for $\prec_{\text {lex }}$ when $\succ$ is free-connex, so Theorem 24 proves the same tractability result as [9, Theorem 39], again with an extra $|D|$ factor but compatible with negative and signed conjunctive queries.

## 6 Conclusion and Future Work

In this paper, we have proven new tractability results concerning the direct access of the answers of signed conjunctive queries. In particular, we have introduce a framework unifying the positive and the signed case using factorised representation of the answer sets of the query. This opens many new avenue of research. First of all, contrary to the positive query case, we do not yet have lower bounds parameterised by $\beta$-hyperorder width on the preprocessing and access time needed for solving direct access tasks. Having a better understanding of what happens on fractional relaxation of $\beta$-hyperorder width would be a first step toward proving such lower bounds. Another question remains concerning the complexity of the DPLL-style algorithm. We strongly believe that with the right data structures, the complexity of DPLL on queries having fractional hypertree width $k$ should be of the order $|\mathbf{D}|^{k}$ instead of the $|\mathbf{D}|^{k+1}$, which would allow us to match the existing upper bounds exactly. We leave a more involved analysis of this algorithm for future work.

Finally, we belive that the circuit representation that we are using is promising for answering different kind of aggregation tasks and hence generalising existing results to

[^5]the case of signed conjunctive queries. For example, we believe that FAQ and AJAR queries [24, 21] could be solved using this data structure. Indeed, it looks possible to annotate the circuit with semi-ring elements and to project them out in a similar fashion as Theorem 23. Similarly, we believe that the framework of [15] for solving direct access tasks on conjunctive queries with aggregation operators may be generalised in a similar way to the class of ordered $\{\times$, dec $\}$-circuits.

## References

1 Guillaume Bagan. Algorithmes et complexité des problèmes d'énumération pour l'évaluation de requêtes logiques. (Algorithms and complexity of enumeration problems for the evaluation of logical queries). PhD thesis, University of Caen Normandy, France, 2009.
2 Guillaume Bagan, Arnaud Durand, Etienne Grandjean, and Frédéric Olive. Computing the jth solution of a first-order query. RAIRO-Theoretical Informatics and Applications, 42(1):147-164, 2008.

3 Nurzhan Bakibayev, Tomáš Kočiskỳ, Dan Olteanu, and Jakub Závodnỳ. Aggregation and ordering in factorised databases. Proceedings of the VLDB Endowment, 6(14):1990-2001, 2013.
4 Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC '93, pages 226-234. ACM, 1993.
5 Johann Brault-Baron. De la pertinence de l'énumération: complexité en logiques propositionnelle et du premier ordre. PhD thesis, Université de Caen, 2013.
6 Johann Brault-Baron. Hypergraph acyclicity revisited. ACM Computing Surveys (CSUR), 49(3):1-26, 2016.
7 Johann Brault-Baron, Florent Capelli, and Stefan Mengel. Understanding model counting for beta-acyclic CNF-formulas. In 32nd International Symposium on Theoretical Aspects of Computer Science, volume 30 of LIPIcs, pages 143-156. Schloss Dagstuhl, 2015.
8 Karl Bringmann, Nofar Carmeli, and Stefan Mengel. Tight fine-grained bounds for direct access on join queries. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 427-436, 2022.
9 Karl Bringmann, Nofar Carmeli, and Stefan Mengel. Tight fine-grained bounds for direct access on join queries. arXiv preprint arXiv:2201.02401, 2022.
10 Florent Capelli. Structural restrictions of CNF-formulas: applications to model counting and knowledge compilation. PhD thesis, Université Paris Diderot, Sorbonne Paris Cité, 2016. URL: https://florent.capelli.me/publi/these_capelli.pdf.
11 Florent Capelli. Understanding the complexity of \#SAT using knowledge compilation. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1-10. IEEE Computer Society, 2017. doi:10.1109/LICS. 2017.8005121.

12 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald. Tractable orders for direct access to ranked answers of conjunctive queries. ACM Transactions on Database Systems, January 2023. doi:10.1145/3578517.
13 Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Benny Kimelfeld, and Nicole Schweikardt. Answering (unions of) conjunctive queries using random access and random-order enumeration. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 393-409, 2020.
14 Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in relational data bases. In Proceedings of the Ninth Annual ACM Symposium on Theory of Computing, STOC '77, pages 77-90, New York, NY, USA, 1977. ACM. doi:10.1145/800105. 803397.

15 Idan Eldar, Nofar Carmeli, and Benny Kimelfeld. Direct access for answers to conjunctive queries with aggregation. arXiv preprint arXiv:2303.05327, 2023.
16 Johannes K Fichte, Markus Hecher, Neha Lodha, and Stefan Szeider. An smt approach to fractional hypertree width. In Principles and Practice of Constraint Programming: 24th International Conference, CP 2018, Lille, France, August 27-31, 2018, Proceedings 24, pages 109-127. Springer, 2018.
17 Robert Ganian, André Schidler, Manuel Sorge, and Stefan Szeider. Threshold treewidth and hypertree width. Journal of Artificial Intelligence Research, 74:1687-1713, 2022.
18 Georg Gottlob and Reinhard Pichler. Hypergraphs in model checking: Acyclicity and hypertreewidth versus clique-width. SIAM Journal on Computing, 33(2):351-378, 2004.

19 Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. ACM Transactions on Algorithms (TALG), 11(1):4, 2014.
20 Jinbo Huang and Adnan Darwiche. DPLL with a Trace: From SAT to Knowledge Compilation. In Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, pages 156-162, 2005.
21 Manas R Joglekar, Rohan Puttagunta, and Christopher Ré. Ajar: Aggregations and joins over annotated relations. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 91-106, 2016.
22 Jens Keppeler. Answering Conjunctive Queries and FO+ MOD Queries under Updates. PhD thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2020.
23 Mahmoud Abo Khamis, Hung Q Ngo, and Atri Rudra. Faq: questions asked frequently. arXiv preprint arXiv:1504.04044, 2015.
24 Mahmoud Abo Khamis, Hung Q Ngo, and Atri Rudra. Faq: questions asked frequently. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 13-28, 2016.
25 Matthias Lanzinger. Tractability beyond $\beta$-acyclicity for conjunctive queries with negation and sat. Theoretical Computer Science, 942:276-296, 2023.
26 Dan Olteanu. Factorized databases: A knowledge compilation perspective. In AAAI Workshop: Beyond NP, 2016.
27 Dan Olteanu and Jakub Závodnỳ. Factorised representations of query results: size bounds and readability. In Proceedings of the 15th International Conference on Database Theory, pages 285-298. ACM, 2012.
28 Dan Olteanu and Jakub Závodnỳ. Size bounds for factorised representations of query results. ACM Transactions on Database Systems (TODS), 40(1):1-44, 2015.
29 Dan Olteanu and Jakub Závodný. Size Bounds for Factorised Representations of Query Results. ACM Transactions on Database Systems, 40(1):1-44, March 2015.
30 S. Ordyniak, D. Paulusma, and S. Szeider. Satisfiability of acyclic and almost acyclic CNF formulas. Theoretical Computer Science, 481:85-99, 2013.
31 Reinhard Pichler and Sebastian Skritek. Tractable counting of the answers to conjunctive queries. Journal of Computer and System Sciences, 79:984-1001, September 2013.
32 Tian Sang, Fahiem Bacchus, Paul Beame, Henry A Kautz, and Toniann Pitassi. Combining component caching and clause learning for effective model counting. Theory and Applications of Satisfiability Testing, 4:7th, 2004.
33 Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. Learning linear regression models over factorized joins. In Proceedings of the 2016 International Conference on Management of Data, pages 3-18. ACM, 2016.
34 Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In Nicole Schweikardt, Vassilis Christophides, and Vincent Leroy, editors, Proc. 17 th International Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014, pages 96-106. OpenProceedings.org, 2014. doi:10.5441/002/icdt.2014.13.
35 Mihalis Yannakakis. Algorithms for acyclic database schemes. In Proceedings of the Seventh International Conference on Very Large Data Bases - Volume 7, VLDB '81, pages 82-94. VLDB Endowment, 1981.


[^0]:    ${ }^{1}$ We follow the definition of [25] concerning the size of the database. Adding the size of the domain here is essential since we are dealing with negative atoms. Hence a query may have answers even when the database is empty, for example the query $Q=\neg R(x)$ with $R^{\mathrm{D}}=\emptyset$ has $|D|$ answers.

[^1]:    ${ }^{2}$ That is, there may be more than one edge between two nodes $u$ and $v$.

[^2]:    ${ }^{3}$ While one could easily change the algorithm so that it produces a $\prec$-ordered $\{\times$, dec $\}$-circuit instead, the structural parameters we will be considering for the tractability of DPLL in Section 4.2 are more naturally defined on $\prec$. We choose to present DPLL this way to ease the proofs later.

[^3]:    ${ }^{4}$ Lemma 4 of [25] establishes the result for a connected subhypergraph of $H$ but the same proof works for non-connected subhypergraphs.

[^4]:    5 The case where $Q$ has many $\rangle$-component can be easily dealt with by constructing the Cartesian product of each $\rangle$-component of $Q$.

[^5]:    6 The notion of $S$-connexity already exists for tree decompositions. We use the same name here as the existence of an $S$-connex tree decomposition of (fractional) hypertree width $k$ is equivalent to the existence of an $S$-connex elimination order of (fractional) hyperorder width $k$.

